Assessment of the Impact of Wheat Cleaning Processes on Weed Dissemination in the Green Mountain Region, Libya

Published: 2025-05-31

Abstract

Wheat screening residues represent a significant and diverse source of weed seeds, indicating the potential transmission of various weed species during the seed cleaning process. This contamination can result in substantial reductions in grain yield. Therefore, weed management programs should place greater emphasis on the efficiency of seed cleaning operations prior to sowing.

In this study, five wheat seed samples (each weighing approximately 250 g) were collected from trusted farms in the Green Mountain region during the 2023/2024 growing season. The samples were screened using a 2 mm sieve at the Crop Science Laboratory, and the screening residues were subsequently sown in sterilized soil-filled containers (60 × 90 cm surface area and 30 cm depth). The residues were applied at different weights (0, 2.5, 5, 7.5, and 10 g per container) under controlled laboratory conditions. A randomized complete block design (RCBD) with three replicates was employed to evaluate the density and diversity of weed seeds transferred via wheat seed lots. Diversity indices such as Shannon’s Index and Pielou’s Evenness Index were calculated, and data were analyzed using SAS software.
The results revealed a high diversity of weed species, which increased with the amount of screening residues. Convolvulus arvensis was the dominant species across all containers, followed by Brassica campestris, Lecanora escylenta, and Lathyrus sativus, while Fumaria densiflora had the lowest frequency. These findings underscore the importance of improving seed screening protocols to minimize the spread of weed seeds through wheat seed lots The study also highlights the socio-economic and environmental benefits of advanced screening, emphasizing the need for integrating smart technologies like GIS to optimize weed management.

Keywords: weed diversity, wheat cultivation Green Mountain, seed screening, Traditional Methods

How to Cite

Alham Mohamed Hassan, Wajdi Aissa Mohammed, & Hudi Mohammed Omar. (2025). Assessment of the Impact of Wheat Cleaning Processes on Weed Dissemination in the Green Mountain Region, Libya. Bani Waleed University Journal of Humanities and Applied Sciences, 10(2), 513-519. https://doi.org/10.58916/jhas.v10i2.772

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Author Biography

  • Alham Mohamed Hassan, Department of crop science, Faculty of Agriculture, Omar Al -Mukhtar University,Albyda, Libya

    الاســــــــــم   :  الهام محمد حسن محمد

    العنــــــوان   :  البيضاء\ليبيا

    الجنسية      :  ليبيا

    البريد الإليكتروني  :  elham.hassan@omu.edu.ly

     

    الدرجة العلمية    :   دكتوراه . محاضر

       

    اللغات والمهارات

    • مستوى متوسط من اللغة الالنجليزية
    • القدرة على العمل بشكل مستقل وضمن فريق
    • خبرة في أستخدام برامج word , Exal, canva,powerpont

     

     

    الخبرات العلمية و الدورات

    • دورة التحول الرقمي
    • دورة أخلاقيات البحث العلمي
    • كورس الذكاء الاصطناعي و علاقته بالبحث العلمي
    • كورس الصوتيات في اللغة الإنجليزية
    • دورة إعداد القيادات الإدارية
    • دورة زراعة فطر عيش الغراب
    • دورة إعداد المشاريع التنافسية لتمويل البحوث العلمية

     

     

     

    الأبحاث المنشورة

     

     

    1. Al-Naggar A.M.M., Soliman A.M., Hussien M.H., Elham M.H. Mohamed (2022). Genetic diversity of maize inbred lines based on morphological traits and its association with heterosis. SABRAO J. Breed. Genet. 54(3): 589-597. http://doi.org/10.54910/sabrao2022.54.3.11
    2. Al-Naggar A.M.M., Soliman A.M., Elham M.H. Mohamed (2022). Interactive effects of genotype and water deficit on yield and quality traits of maize inbred lines and F1 diallel crosses. Plant Cell Biotechnology and Molecular Biology 23(37&38):51-67; 2022. DOI: 10.56557/PCBMB/2022/v23i37-387899
    3. Al-Naggar A.M.M., Soliman A.M., Hussien Mona H., Ibrahim Shafik D., Elham M.H. Mohamed (2022). Genetic relatedness among maize inbred lines based on ISSR markers and its association with heterosis and hybrid performance. Innovare Journal of Agri. Sci, Vol 10, Issue 6, 2022, 5-9. http://dx.doi.org/10.22159/ijags.2022v10i6.46548

References

1.
Amare, A., Tesfaye, K., & Lemma, B. (2014). Weed flora and their interference in wheat (Triticum aestivum L.) at Adet area, Amhara Region, Ethiopia. Journal of Agricultural Science, 6(1), 1–10. https://doi.org/10.5539/jas.v6n1p1
2.
Burkov, V. I., Tkachuk, O. V., & Kovalchuk, S. I. (2018). Weed seed contamination in harvested grain and its impact on crop yield. Ukrainian Journal of Ecology, 8(3), 234–242.
3.
Chicouene, P. (2020). Integrated weed management in wheat: A review. Journal of Agricultural Science, 12(2), 1–15. https://doi.org/10.5539/jas.v12n2p1
4.
Das, A. K. (2008). Weed management in wheat: A review. Indian Journal of Weed Science, 40(1), 1–10.
5.
Asmaa Al-Mabrouk Abdel-Sayed, Fatima Faraj Mohamed, Najwa Mohamed, & Fatima Khamis. (2023). Performance evaluation of some genotypes of double-row barley (Hordeum vulgare L.) under rainfed conditions in the Green Mountain region of Libya. Bani Waleed University Journal for Humanities and Applied Sciences, 8(2), 453-473.
6.
Food and Agriculture Organization of the United Nations. (2025). FAO homepage. https://www.fao.org
7.
Gharde, S. S., Patil, S. S., & Patil, P. S. (2018). Weed flora and their interference in wheat (Triticum aestivum L.) in Vidarbha region of Maharashtra. Journal of Pharmacology and Phytochemistry, 7(1), 1–5.
8.
Hossain, M. A. (2015). Integrated weed management in wheat: A sustainable approach. Journal of Agronomy, 14(3), 121–128.
9.
ISWS (International Survey of Weed Seeds). (2018). Weed seed contamination in crop seeds: A global perspective (Vol. 15, pp. 1–100). International Survey of Weed Seeds.
10.
Kumar, V. (2014). Weed seed contamination in harvested grain: A review. Journal of Crop Science and Biotechnology, 17(2), 101–110.
11.
Lollato, R. P., Holman, J. D., & Jhala, A. J. (2020). Weed seed return to the soil and its implications for wheat production. Crop Science, 60(2), 651–662. https://doi.org/10.1002/csc2.20051
12.
Norsworthy, J. K., Oliver, S. R., & Bond, J. D. (2012). Integrated weed management: Principles and practices. Weed Science, 60(2), 167–178. https://doi.org/10.1614/WS-D-11-00061.1
13.
Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43. https://doi.org/10.1017/S0021859606006043
14.
Jamal Saeed Dariaq, Abdul Qader Mohammed Abu Jadida, & Mohammed Fathallah Al-Hassi. (2024). Pollution of some groundwater wells in the city of Al-Marj with some heavy elements and nitrates. Journal of Bani Waleed University for Humanities and Applied Sciences, 9(5), 457-464.
15.
Owen, M. D. K., & Powles, S. B. (2020). The global threat of herbicide-resistant weeds. Trends in Plant Science, 25(10), 1003–1015. https://doi.org/10.1016/j.tplants.2020.07.003
16.
Pisal, V. S., & Sagarka, D. D. (2013). Effectiveness of seed cleaning methods in reducing weed seed contamination in wheat (Triticum aestivum L.). Indian Journal of Weed Science, 45(1), 1–6.
17.
Pradhan, P., & Chakraborti, A. (2010). Integrated weed management in wheat: A review. Indian Journal of Agronomy, 55(2), 101–108.
18.
SAS Institute Inc. (2021). SAS/STAT® 15.2 user’s guide. SAS Institute Inc.
19.
Walker, S. (1995). Weed seed contamination in harvested grain: Implications for crop production. Weed Research, 35(3), 201–210. https://doi.org/10.1111/j.1365-3180.1995.tb01823.x
20.
Sabah Musa Abdul Majeed, Zakia Fadel Mansour, & Fatima Muhammad Younis. (2024). A study of the effect of fertilization with different rates of nitrogen and phosphorus on the percentage and quantity of volatile oil yield and the total chlorophyll content of leaves of marjoram plant Majorana hortensis moench growing under the conditions of the Green Mountain region. Journal of Bani Waleed University for Humanities and Applied Sciences, 490-504.
21.
Zhang, L., et al. (2023). Deep learning-based weed detection in wheat fields. Nature Agriculture, 7(2), 112–125. https://doi.org/10.1038/s44100-023-00142-w
22.
Wang, H., et al. (2022). UAVs for weed mapping. Remote Sensing, 14(3), 550. https://doi.org/10.3390/rs14030550
23.
Food and Agriculture Organization of the United Nations. (2024). Climate-smart weed management. https://www.fao.org
24.
Smith, J., et al. (2023). AI-based seed sorting: A revolution in weed management. Nature Agriculture, 7(2), 45–60. https://doi.org/10.1038/s44100-023-00120-2

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >> 

Similar Articles

1-10 of 42

You may also start an advanced similarity search for this article.