Cumulative Ability Of Lolium multiflorum Grasses for Some Heavy Metals in Shahat, Libya
DOI:
https://doi.org/10.58916/jhas.v10i1.711Keywords:
Lolium multiflorum- soil`s heavy metals– Cumulative –ability - shahatAbstract
This study was undertaken in the Shahat Forest aimed to evaluate the capacity of L. multiflorum to absorb and retain heavy metals in its tissues. heavy metals investigated included (Zn), (Fe), (Cd), & (Pb), with samples obtained from both the aerial and root parts of L. multiflorum, as well as from soil at a depth of 0-40 cm beneath L. multiflorum. Importantly, the concentrations of these heavy metals were found to be within the permissible limits set by (WHO). The findings indicated that L. multiflorum significantly contributes to absorb and accumulate heavy metals, with (BAF) for Zn, Fe, Cd, and Pb recorded at 2.5, 2, 1.7, and 2.2 mg, respectively. Additionally, (BCF) for the roots exceeded 1, while (TF) remained below 1 for all toxic metals examined. Thus, L. multiflorum has the potential to function as a bio accumulator utilizing a phytostabilization approach. Statistical evaluations demonstrated significant variations (p < 0.05) in heavy metal concentrations across the various parts of the grasses and soils.
Downloads
References
Abu-Darwish, M. S., & Ofir, R. (2014). Heavy metals content and essential oil yield of Juniperus phoenicea L. in different origins in Jordan. Environmental Engineering & Management Journal (EEMJ), 13(12).
Ahmad, M., Usman, A. R., Al-Faraj, A. S., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2018). Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere, 194, 327-339.
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019(1), 6730305.
Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881.
Aljerf, L., & Choukaife, A. E. (2018). Review: assessment of the doable utilisation of dendrochronology as an element tracer technology in soils artificially contaminated with heavy metals. Biodiversity Int J, 2(1), 00037.
Angelova, V. (2022). Heavy metal accumulation and chemical composition of essential oil of Juniperus oxycedrus L.(Cupressaceae) grown on serpentine soils in Bulgaria. Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering, 11.
Anum, S., Khan, S. M., Chaudhary, H. J., Ahmad, Z., & Afza, R. (2019). Phytoremediation of nickel polluted ecosystem through selected ornamental plant species in the presence of bacterium Kocuria rhizophila. Bioremediation Journal, 23(3), 215-226.
Asbabou, A., Hanane, T., Gourich, A. A., Siddique, F., Drioiche, A., Remok, F., ... & Zair, T. (2024). Phytochemical profile, physicochemical, antioxidant and antimicrobial properties of Juniperus phoenicea and Tetraclinis articulate: in vitro and in silico approaches. Frontiers in Chemistry, 12, 1397961.
Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and environmental safety, 174, 714-727.
Bahiru, D. B., & Yegrem, L. (2021). Levels of heavy metal in vegetable, fruits and cereals crops in Ethiopia: A review. International Journal of Environmental Monitoring and Analysis, 9(4), 96.
Ben Mahmoud, K. R. (1995). Libyan soils (Their Genesis, Classification, Properties and Agricultural potentials) NASR. Tripoli, Libya, 615.
Borowiak, K., Budka, A., Hanć, A., Kayze, D., Lisiak, M., Zbierska, J., ... & Łopatka, N. (2018). Relations between photosynthetic pigments, macro-element contents and selected trace elements accumulated in Lolium multiflorum L. exposed to ambient air conditions. Acta Biologica Cracoviensia s. Botanica, 60(1).
Cakaj, A., Lisiak-Zielińska, M., Hanć, A., Małecka, A., Borowiak, K., & Drapikowska, M. (2023). Common weeds as heavy metal bioindicators: a new approach in biomonitoring. Scientific Reports, 13(1), 6926.
Cardoso-Silva, C. B., Melo, J., Pereira, A., & Cerqueira-Silva, C. B. (2013). Aoac. 1997. Official Methods Of Analysis Of The Association Of Official Analytical. Caracterização, Propagação E Melhoramento Genético De Pitaya Comercial E Nativa Do Cerrado, 29(1), 48.
Cesur, A., Zeren Cetin, I., Abo Aisha, A. E. S., Alrabiti, O. B. M., Aljama, A. M. O., Jawed, A. A., ... & Ozel, H. B. (2021). The usability of Cupressus arizonica annual rings in monitoring the changes in heavy metal concentration in air. Environmental Science and Pollution Research, 28(27), 35642-35648.
Chaplygin, V., Minkina, T., Mandzhieva, S., Burachevskaya, M., Sushkova, S., Poluektov, E., ... & Kumacheva, V. (2018). The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants. Environmental monitoring and assessment, 190, 1-18.
Christenhusz, M. J., & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201-217.
Chitimus, D., Nedeff, V., Mosnegutu, E., Barsan, N., Irimia, O., & Nedeff, F. (2023). Studies on the accumulation, translocation, and enrichment capacity of soils and the plant species phragmites australis (common reed) with heavy metals. Sustainability, 15(11), 8729.
Cunningham,S.D., and Ow, D.W.(1996):Promises and prospects of phytoremediation. – Plant Physiol. 110; 715-719
.
Dalvi, A. A., & Bhalerao, S. A. (2013). Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci, 2(9), 362-368.
Dradrach, A., Karczewska, A., Bogacz, A., Kawałko, D., & Pruchniewicz, D. (2024). Accumulation of Potentially Toxic Metals in Ryegrass (Lolium perenne, L.) and Other Components of Lawn Vegetation in Variously Contaminated Sites of Urban Areas. Sustainability, 16(18), 8040.
Engelhardt, K. A., & Hawkins, K. (2016). Identification of low growing, salt tolerant turfgrass species suitable for use along highway right of way (No. MD-16-SHA-UMCES-6-3).
Farahat, E., & Linderholm, H. W. (2015). The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Science of the Total Environment, 512, 1-7.
Georgiev, P., Groudev, S., Spasova, I., & Nicolova, M. (2016). Remediation of a grey forest soil contaminated with heavy metals by means of leaching at acidic pH. Journal of soils and sediments, 16, 1288-1299.
Gerhardt, K. E., Gerwing, P. D., & Greenberg, B. M. (2017). Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256, 170-185.
Ghandali, M. V., Safarzadeh, S., Ghasemi-Fasaei, R., & Zeinali, S. (2024). Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO2 nanoparticle-modified biochar. Scientific Reports, 14(1), 10684.
Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ, 6(4), 18.
Gleba D.,Borisjuk,N.V.,Borisjuk, L. G.,Kneer,R., Poulev, A.,Skarzhinskaya,M., Dushenkov, S. Logendra, S. Gleba, Y. Y., Raskin, I. (1999): Use of Plant root for phytoremediation and molecular farming. – Proc. Natl.Acad.Sci, USA. 96; 5973-5977.
Gola, D., Malik, A., Shaikh, Z. A., & Sreekrishnan, T. R. (2016). Impact of heavy metal containing wastewater on agricultural soil and produce: relevance of biological treatment. Environmental Processes, 3, 1063-1080.
Hall, J. Á. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of experimental botany, 53(366), 1-11.
Hao, X., Taghavi, S., Xie, P., Orbach, M. J., Alwathnani, H. A., Rensing, C., & Wei, G. (2014). Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. International Journal of Phytoremediation, 16(2), 179-202.
He, Y., Su, S., Cheng, J., Tang, Z., Ren, S., & Lyu, Y. (2021). Bioaccumulation and trophodynamics of cyclic methylsiloxanes in the food web of a large subtropical lake in China. Journal of Hazardous Materials, 413, 125354.
Hu, Y., Wang, D., Wei, L., Zhang, X., & Song, B. (2014). Bioaccumulation of heavy metals in plant leaves from Yan׳ an city of the Loess Plateau, China. Ecotoxicology and environmental safety, 110, 82-88.
Huang, C., Lai, C., Xu, P., Zeng, G., Huang, D., Zhang, J., ... & Wang, R. (2017). Lead-induced oxidative stress and antioxidant response provide insight into the tolerance of Phanerochaete chrysosporium to lead exposure. Chemosphere, 187, 70-77.
Huang, J., Wang, C., Qi, L., Zhang, X., Tang, G., Li, L., ... & Lu, M. (2020). Phosphorus is more effective than nitrogen in restoring plant communities of heavy metals polluted soils. Environmental Pollution, 266, 115259.
Hussain, B., Abbas, Y., Ali, H., Zafar, M., Ali, S., Ashraf, M. N., ... & Valderrama, J. R. D. (2022). Metal and metalloids speciation, fractionation, bioavailability, and transfer toward plants. In Metals metalloids soil plant water systems (pp. 29-50). Academic Press.
Iatrou, M., Papadopoulos, A., Papadopoulos, F., Dichala, O., Psoma, P., & Bountla, A. (2014). Determination of soil available phosphorus using the Olsen and Mehlich 3 methods for Greek soils having variable amounts of calcium carbonate. Communications in Soil Science and Plant Analysis, 45(16), 2207-2214.
Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K., & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of environmental management, 217, 56-70.
Khan, S. N., Nafees, M., & Imtiaz, M. (2023). Assessment of industrial effluents for heavy metals concentration and evaluation of grass (Phalaris minor) as a pollution indicator. Heliyon, 9(9).
Khermandar, K., Mahdavi, A., & Ahmady Asbchin, S. (2016). Differential expression of Lead accumulation during two growing seasons by desert shrub Acacia victoriae L. Desert, 21(2), 143-154.
Kord, B., Khademi, A., Madanipour Kermanshahi, M., Pourabbasi, S., & Hashemi, S. A. (2024). Phytoremediation potential of tree species in soil contaminated with lead and cadmium. Caspian Journal of Environmental Sciences, 1-9.
Korzeniowska, J., & Stanislawska-Glubiak, E. (2023). The Phytoremediation Potential of Local Wild Grass Versus Cultivated Grass Species for Zinc-Contaminated Soil. Agronomy, 13(1), 160.
Kumar, A., Maiti, S. K., Tripti, Prasad, M. N. V., & Singh, R. S. (2017). Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. Journal of soils and sediments, 17, 1358-1368.
Kwiatkowska-Malina, J., & Maciejewska, A. (2013). Uptake of heavy metals by darnel multifloral (Lolium multiflorum Lam.) at diverse soil reaction and organic matter content. Soil Science Annual, 64(1), 19.
Marques, A. P., Rangel, A. O., & Castro, P. M. (2009). Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622-654.
Masotla, M. K. L., Melato, F. A., & Mokgalaka-Fleischmann, N. S. (2023). Extraction Potential of Lolium perenne
L.(Perennial Rye Grass) for Metals in Landfill Soil: Its Tolerance and Defense Strategies. Minerals, 13(7), 873.
McIntyre, T., 2003. Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering/ Biotechnology 78, 97-123.
Mellem, J. J., Baijnath, H., & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 7(4), 591-596.
Mishra, T., & Pandey, V. C. (2019). Phytoremediation of red mud deposits through natural succession. In Phytomanagement of polluted sites (pp. 409-424).
Mugica-Alvarez, V., Cortés-Jiménez, V., Vaca-Mier, M., & Domínguez-Soria, V. (2015). Phytoremediation of mine tailings using Lolium multiflorum. Int. J. Environ. Sci. Dev, 6(4), 246.
Najafi, S., & Jalali, M. (2016). Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils. Environmental monitoring and assessment, 188(6), 342. https://doi.org/10.1007/s10661-016-5329-9.
Nogueira, T. A. R., Franco, A., He, Z., Braga, V. S., Firme, L. P., & Abreu-Junior, C. H. (2013). Short-term usage of sewage sludge as organic fertilizer to sugarcane in a tropical soil bears little threat of heavy metal contamination. Journal of Environmental Management, 114, 168-177.
Nouha, k., Mounira, g. M., Lamia, h., Shahhat, i., Mehrez, r., & Arbi, g. (2024). Physiological and biochemical responses in mediterranean saltbush (atriplex halimus l., amaranthaceae juss.) To heavy metal pollution in arid environment. Pak. J. Bot, 56(5), 1717-1726.
Othman, A., & Al-Habbat, N. (2023). Modeling Trends in Rainfall Rates at Shahat Meteorological Station (1961-2050) Using Statistical Techniques. Journal of Humanitarian and Applied Sciences, 8(16), 176-188.
Ott, R. L. and Longnecker M. T. (2015) An introduction to statistical methods and data analysis: Nelson Education. 1296.
Oumlouki, K. E., Salih, G., Jilal, A., Dakak, H., Amrani, M. E., & Zouahri, A. (2021). Comparative study of the mineral composition of carob pulp (Ceratonia siliqua L.) from various regions in Morocco. Moroccan Journal of Chemistry, 9(4), 9-4.
Pandey, R., Shubhashish, K., & Pandey, J. (2012). Dietary intake of pollutant aerosols via vegetables influenced by atmospheric deposition and wastewater irrigation. Ecotoxicology and environmental safety, 76, 200-208.
Patra, D. K., Acharya, S., Pradhan, C., & Patra, H. K. (2021). Poaceae plants as potential phytoremediators of heavy metals and eco-restoration in contaminated mining sites. Environmental Technology & Innovation, 21, 101293.
Pinna, M. V., Diquattro, S., Garau, M., Grottola, C. M., Giudicianni, P., Roggero, P. P., & Garau, G. (2024). Combining biochar and grass-legume mixture to improve the phytoremediation of soils contaminated with potentially toxic elements (PTEs). Heliyon, 10(5).
Prasad, M. N. V., & De Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol, 6(3), 110-146.
Prelac, M., BILANDŽIJA, N., & ZGORELEC, Ž. (2016). The phytoremediation potential of heavy metals from soil using Poaceae energy crops: A review. Journal of Central European Agriculture.
Rabêlo, F. H. S., Vangronsveld, J., Baker, A. J., van Der Ent, A., & Alleoni, L. R. F. (2021). Are grasses really useful for the phytoremediation of potentially toxic trace elements? A review. Frontiers in Plant Science, 12, 778275.
Raklami, A., Meddich, A., Oufdou, K., & Baslam, M. (2022). Plants—Microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International Journal of Molecular Sciences, 23(9), 5031.
Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?. Plant science, 180(2), 169-181.
Raskin, I, Kumar, P.B.A.N., Dushenkov, S. and Salt, D. (1994): Bioconcentration of heavy metals by plants. – Current Opinion Biotechnology 5; 285-290.
Sarathchandra, S. S., Rengel, Z., & Solaiman, Z. M. (2022). Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). Chemosphere, 288, 132573.
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., ... & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710-721.
Siyar, R., Doulati Ardejani, F., Norouzi, P., Maghsoudy, S., Yavarzadeh, M., Taherdangkoo, R., & Butscher, C. (2022). Phytoremediation potential of native hyperaccumulator plants growing on heavy metal-contaminated soil of Khatunabad copper smelter and refinery, Iran. Water, 14(22), 3597.
Sladkovska, T., Wolski, K., Bujak, H., Radkowski, A., & Sobol, Ł. (2022). A review of research on the use of selected grass species in removal of heavy metals. Agronomy, 12(10), 2587.
Sopyan, S., Sikanna, R., & Sumarni, N. K. (2014). Fitoakumulasi Merkuri Oleh Akar Tanaman Bayam Duri (Amarantus Spinosus Linn) Pada Tanah Tercemar. Natural Science: Journal of Science and Technology, 3(1).
Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment?. Frontiers in plant science, 9, 1476.
Takarina, N. D., & Pin, T. G. (2017). Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara Journal of Science, 77-81.
Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International journal of chemical engineering, 2011(1), 939161.
Van der Ent, A., Baker, A. J., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and soil, 362, 319-334.
Venegas-Rioseco, J., Ginocchio, R., & Ortiz-Calderón, C. (2021). Increase in phytoextraction potential by genome editing and transformation: a review. Plants, 11(1), 86.
Wen, W., Zhao, H., Ma, J., Li, Z., Li, H., Zhu, X., ... & Liu, Y. (2018). Effects of mutual intercropping on Pb and Zn accumulation of accumulator plants Rumex nepalensis, Lolium perenne and Trifolium repens. Chemistry and Ecology, 34(3), 259-271.
World Health Organization (WHO). (1996). Permissible limits of heavy metals in soil and plants. Geneva, Switzerland.
Wu, Q., Wang, S., Thangavel, P., Li, Q., Zheng, H., Bai, J., & Qiu, R. (2011). Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. International Journal of phytoremediation, 13(8), 788-804.
Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011(1), 402647.
Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in plant science, 11, 359.
Youning, Hu., W. Dexiang, W. Lijing, Z. Xinping and S. Bin (2014). Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotoxicology and Environmental Safety, 110: 82–88.
Yu, H., Xiao, H., Cui, Y., Liu, Y., & Tan, W. (2022). High nitrogen addition after the application of sewage sludge compost decreased the bioavailability of heavy metals in soil. Environmental Research, 215, 114351.
Zhang, L., Li, H. X., Ma, W. F., & Zhao, X. H. (2006). Phytoremediation of complex contaminations in dredged sewage river sediment by Lolium multiflorum Lam. Journal of Agro-Environment Science, 25(1), 107-112.
Zhang, M., Cui, L., Sheng, L., & Wang, Y. (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecological engineering, 35(4), 563-569.
Zhao, Q., Thompson, A. M., Callister, S. J., Tfaily, M. M., Bell, S. L., Hobbie, S. E., & Hofmockel, K. S. (2022). Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils. Science of the Total Environment, 806, 150514.
Zhao, X., Liu, J., Xia, X., Chu, J., Wei, Y., Shi, S., ... & Jiang, Z. (2014). The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environmental Science and Pollution Research, 21, 5076-5085.
Zhu, Y. Q., Wang, H. J., Lv, X., Song, J. H., Wang, J. G., & Tian, T. (2021). Effect of biochar on soil cadmium content and cadmium uptake of cotton (Gossypium hirsutum L.) grown in northwestern China. Applied Ecology & Environmental Research, 19(5).
Zia-ul-Haq, M., Iqbal, F., Shafiq, S., Nawaz, M., Ali, B., Ibrahim, M. U., & Abd_Allah, E. F. (2024). Exploring the Phyto-Remediation Potential of Different Winter Weeds for Lead Toxicity. Polish Journal of Environmental Studies, 33(4), 4481-4492.