A Cubic B-Spline Collocation Method for Solving Anomalous Sub-diffusion Equation
DOI:
https://doi.org/10.58916/jhas.v7i6.580Keywords:
A Cubic B-spline collocation method, anomalous sub-diffusion equation, Grünwald-Letnikov formula.Abstract
Abstract: In this paper, A cubic B-spline collocation method is proposed to solve one dimensional anomalous sub-diffusion equation. The fractional derivative is estimated by using right shifted Grünwald-Letnikov formula of order . Numerical results are presented to confirm the feasibility and validity of this scheme.
Downloads
References
Al-Shibani, F. et al., (2012), The Implicit Keller Box method for the one dimensional time fractional diffusion equation., Journal of Applied Mathematics & Bioinformatics, 2, 69-84.
Li, C. Chen, A., and Ye, J., (2011), Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equation., Journal of Computational Physics, 230, 3352-3368. DOI: 10.1016/j.jcp.2011.01.030.
Sousa, E., (2012), A Second Order Explicit Finite Difference Method for the Fractional Advection Diffusion Equation., Computers and Mathematics with Applications, 64, 3141-3152. DOI: 10.1016/j.camwa.2012.03.002.
I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999, pp. 41-62.
S. Das, Functional Fractional Calculus for system identification and controls. Springer, New York, 2011, pp. 03-11.
R. Klages, G. Radons, and M. Sokolov, Functional Anomalous Transport. Wiley, Weinheim, 2008, pp. 110-118.
Meerschaert, M. Tadjeran, C., (2006), Finite Difference Approximations for Two-Sided Space-Fractional Partial Differential Equations., Applied Numerical Mathematics, 56, 80-90. DOI: 10.1016/j.apnum.2005.02.008.
Latif, B. et al., (2021), New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems., Journal of Computational Physics, 9, 01-13. DOI: 10.3390/math9111250.
Takaci, D. Takaci, A., and Strboja, M., (2010), On the Character of Operational Solutions of the Time-Fractional Diffusion Equation., Nonlinear Analysis, 72, 2367-2374. DOI: 10.1016/j.na.2009.10.037.