Properties of Certain Subclasses of P-valent Functions Defined by Certain Integral Operator

Authors

  • Maryam M. Miftah Department of Mathematics, Faculty of Education, Bani Waleed University Author

DOI:

https://doi.org/10.58916/jhas.v8i5.101

Keywords:

Analytic functions; p-valend functions; starlike functions; convex functions; uniformly starlike functions; uniformly convex functions.

Abstract

In this paper, we introduce standard definitions for new subclasses of uniformly starlike, uniformly convex p-valent functions, and study properties some of uniformly certain classes of analytic functions defined by certain integral operator.

Downloads

Download data is not yet available.

References

R. Aghalary and J. M. Jahangiri, Inclusion Relations for k-uniformly Starlike and Related Functions Under Certain Integral Operators, Ball. Korean Math. Soc. 42(2005), No. 3, Pp. 623-629.

V. Agnhotri and R. Sing, Certain New Subclasses of Uniformly P-Valent Star like and Convex Functions, J Appl computer Math. 2013, Vol. 2, Iss. 4.

H. A. Al-Kharsani, Multiplier transformations and K-uniformly p-valent starlike functions, General Math. Vol. 17, no. 1 (2009), 13-22.

H. A. Al-Kharsani and S. S. Al-Hajiry, A note on certain inequalities for p-valent functions, Rec. 5 February, 2008.

M. K. Aouf, Some inclusion relationships associated with the komatu integral operator, Math. And Comput. Mod., 50(2009)1360-1366.

S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.

J. H. Choi, M. Saigo and H. M. Srivastave, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276(2002) 432-445.

M. E. Drbuk and M. M. Miftah, Some Inclusion Relationships of Certain Subclasses of Analytic Functions Defined by Komatu Integral Operator, JEEEIT TRANSACTIONS,.Vol.1,No.2, December 2020.

R. M. EL-Ashwah, A. H. Hassan, Properties of Certain Subclass of p-valent meromorphic functions associated with certain linear operator, J. of the Egyptian Math. Soc.(2016)24, 226-232.

R. M. El-Ashwah and M. E. Drbuk, inclusion Relations for Uniformly Certain Classes of Analytic Functions, Int. J. Open Problems Complex Analysis, Vol. 7, No. 1, March 2015, ISSN 2074-2827.

R. M. El-Ashwah and M. E. Drbuk, Subordination Properties of p-Valent Functions Defined by Linear Operators, British Journal of Mathematics & Computer Science 4(21): 3000-3013, 2014.

R. M. El-Ashwah and M. E. Drbuk, Subordination Results of p-Valent Functions Defined by Linear Operator, Open Science Journal of Mathematics and Application 2015, 3(3): 50-57.

R. M. El-Ashwah and M. K. Aouf, Some Properties of New Integral Operator, Acta Universitatis Apulensis, No. 24/2021, Issn: 1582-5329, Pp. 51-61.

B. A. Frasin, Convexity of integral operators of p-valent functions, Mathematical and Computer Modelling, Volume. 51, Issues 5-6, March 2010, Pages 601-605.

A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc., 68 (1950), 204-223.

A. W. Goodman, Univalent functions, vol.I,II,Polyg0nal Publishing House, Washington, N. J., 1983.

Y. Komatu, On analytical prolongation of a family of operators, Math. (Cluj) 32 (1990), no. 55, 141-145.

S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin, 59(1985), no. 4, 385-402.

D. A. Patel and N. K. Thakare, On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. Roum., 27 (1983), 145-160.

Published

2023-12-17

Issue

Section

Articles

How to Cite

Maryam M. Miftah. (2023). Properties of Certain Subclasses of P-valent Functions Defined by Certain Integral Operator . Bani Waleed University Journal of Humanities and Applied Sciences, 8(5), 485-496. https://doi.org/10.58916/jhas.v8i5.101

Most read articles by the same author(s)

<< < 17 18 19 20 21 22 

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.