MLP NN for Numeral Recognition Using RGB Algorithm: OCR Metrics and Cross-Validation

المؤلفون

  • Emad Zargoun مؤلف
  • Abobaker Zargoun مؤلف

DOI:

https://doi.org/10.58916/jhas.v9iالخاص.333

الكلمات المفتاحية:

الانجليزية

الملخص

Handwritten numeral recognition remains a critical task in optical character recognition (OCR), with applications spanning from document digitization to automated data entry. This study explores a multi-layer neural network approach employing RGB algorithmic enhancements to enhance the accuracy of handwritten numeral recognition. Implemented in both Matlab and Python, the research investigates interface matching techniques and employs comprehensive OCR metrics for evaluation.

The study showcases significant advancements in understanding the intricacies of numeral character recognition, emphasizing the utilization of cross-validation techniques across Matlab and Python implementations. By validating findings across different datasets and experimental setups, the research establishes robustness and reliability in its methodology. Insights gleaned from this research not only contribute to the field of OCR but also lay a foundation for future advancements in handwriting recognition technologies.

التنزيلات

تنزيل البيانات ليس متاحًا بعد.

التنزيلات

منشور

2024-09-07

كيفية الاقتباس

Emad Zargoun, & Abobaker Zargoun. (2024). MLP NN for Numeral Recognition Using RGB Algorithm: OCR Metrics and Cross-Validation. مجلة جامعة بني وليد للعلوم الإنسانية والتطبيقية, 9(خاص بالمؤتمر الثالث للعلوم والهندسة), 62-73. https://doi.org/10.58916/jhas.v9iالخاص.333

المؤلفات المشابهة

41-47 من 47

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.