Security and Privacy in the Internet of Things: Issues, Challenges, and a Deep Learning-Based Intrusion Detection Framework

المؤلفون

  • Zaied Shouran Libyan Center for Engineering Research and Information Technology, Bani Walid, Libya مؤلف
  • Mohyaadean Atiya Mousa Computer Science Department, Faculty of Information Technology, University of Bani Waleed, Bani Walid, Libya مؤلف
  • Salem Asseed Alatresh Computer Science Department, Faculty of Information Technology, University of Bani Waleed, Bani Walid, Libya مؤلف
  • Mohammed Abdo ulwahad AlSharaa Computer Science Department, Faculty of Education, University of Bani Waleed, Bani Walid, Libya مؤلف

DOI:

https://doi.org/10.58916/jhas.v10i4.1003

الكلمات المفتاحية:

Internet of Things (IoT)، IoT security، data privacy، intrusion detection systems (IDS)، machine learning، deep learning، network security، privacy-preserving

الملخص

The Internet of Things (IoT) devices often lack robust defenses, making them easy targets for malware and network attacks. At the same time, pervasive data collection raises privacy concerns such as user profiling and location tracking. In this paper, we examine key IoT security and privacy issues and propose a machine learning-based intrusion detection framework. We design a deep neural network (multilayer perceptron) trained on a synthetic IoT traffic dataset to distinguish normal behavior from attacks. We compare its performance against several baseline classifiers. In our experiments, the proposed IDS achieves 97.8% accuracy (F1 score 96.5%), significantly outperforming traditional methods. This demonstrates the potential of adaptive learning for securing IoT networks. Our contributions include a comprehensive analysis of IoT threats and privacy challenges, a novel IDS design suited for resource-constrained networks, and a simulated evaluation framework. These results provide insights for building more secure, privacy-aware IoT systems.

التنزيلات

تنزيل البيانات ليس متاحًا بعد.

منشور

2025-10-21

إصدار

القسم

محور العلوم التطبيقية

كيفية الاقتباس

Zaied Shouran, Mohyaadean Atiya Mousa, Salem Asseed Alatresh, & Mohammed Abdo ulwahad AlSharaa. (2025). Security and Privacy in the Internet of Things: Issues, Challenges, and a Deep Learning-Based Intrusion Detection Framework. Bani Waleed University Journal of Humanities and Applied Sciences, 10(4), 225-233. https://doi.org/10.58916/jhas.v10i4.1003

الأعمال الأكثر قراءة لنفس المؤلف/المؤلفين

المؤلفات المشابهة

1-10 من 209

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.