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Abstract: This research paper focuses on object detection, such as bicycles, motorcycles, persons, traffic
lights, traffics signs, and vehicles within the framework of autonomous driving systems in the CARLA
environment. Currently, object detection in autonomous driving primarily relies on actual autonomous
vehicles, which face challenges such as high costs and real-time implementation difficulties. The open-
source CARLA system enables precise and cost-effective experimentation. In this paper, the deep
learning model YOLOVS was used, yielding good results in both training and validation datasets. A total
of 1560 different images were used in the training process, divided into 1120 images for training, 160
images for testing, and 320 images for validation. The training results showed a Precision (P) of 0.898,
Recall (R) of 0.827, mAP@50 of 0.900, and mAP@50-95 of 0.583. In the validation results, the Precision
(P) was 0.891, Recall (R) was 0.801, mAP@50 was 0.880, and mAP@50-95 was 0.542. These results
indicate that the model is capable of accurately detecting and retrieving objects effectively.

Keywords: (Object Detection, Artificial Intelligence, Autonomous Vehicles, CARLA, mean Average

Precision, traffic lights, traffics signs.

Introduction stands out as a robust tool for development and
Self-driving cars are living in a technologically testing of autonomous driving systems within a
transformative era, as scientists and engineers virtual wurban environment. Simulator is
strive to enhance the performance of these distinguished by its simulation engine, which is
systems to ensure the safety and efficiency of built on Unreal Engine 4, and it supports
autonomous navigation. Object detection crucial features such as sensor configuration
emerges as a crucial element in this context, and definition of environmental conditions.
requiring leading vehicles to interact efficiently Paper provided a comprehensive overview of
with these objects to ensure safe and effective simulation’s structure, shedding light on
traffic control. Amid the rapid advancements in intricacies of virtual environment,
artificial intelligence-based autonomous vehicle encompassing elements like roads, buildings,
technologies, understanding the behavior of and various other components. It also detailed
objects in diverse weather scenarios has become configurability of weather conditions and
imperative to ensure the safety of vehicles and terrains. Research extensively covered array of
pedestrians. Simulation systems such as available sensors in CARLA, including cameras,
CARLA provide valuable means to realistically LiDAR, and radar, elucidating their roles in
and effectively address these challenges. training autonomous driving systems. Special
RELATED WORK emphasis was placed on distinctive features
1. In this research paper by S. Malik, M.A. within CARLA, such as Traffic Manager,
Khan, and H. El-Sayed (2022), an in-depth Scenario Runner, and Responsibility Sensitive
exploration of open-source autonomous driving Safety. Paper delved into different releases of
simulator CARLA was conducted. CARLA CARLA, showcasing their wupdates and

ICSELibya-2024 114


mailto:bader_najep@yahoo.com

Object Detection Using Artificial Intelligence in Autonomous Vehicles....................... Bader N. Awedat

enhanced features. In conclusion carried out a
comparative analysis between CARLA and other
simulators. It effectively demonstrated how
CARLA serves as a valuable tool for training
intelligent models for autonomous driving
systems. Paper also highlighted diverse
applications of CARLA in areas like imitation
learning, cooperative driving, and interactions
within driving environments. Throughout
discussion, paper underscored significance of
recognizing that while simulation cannot
replace real-road experiences, it indeed provides
a safe and effective environment for testing and
advancing autonomous driving technologies [1].
2. In a study conducted by Raymond Muller and
others (2022), research was carried out using
DRIVETRUTH system. DRIVETRUTH is a data
collection framework that relies on CARLA
simulator to gather and automatically label
autonomous driving data. It extends capabilities
of Semantic LiDAR to compute three-
dimensional bounding boxes for static objects,
including traffic signals, and also retrieves
customized bounding boxes for dynamic
objects. DRIVETRUTH enables tracking of
context for each object, providing additional
support for autonomous driving systems,
particularly in safety and security applications.
Research demonstrates that DRIVETRUTH can
be used to automatically collect simulation data
that simulates real-world driving conditions,
with a focus on classifying and tracking traffic
signals [2]

3. In paper by Dosovitskiy, A. et al. (2017), an
open autonomous driving simulator called
CARLA was introduced. This simulator is built
on Unreal Engine 4 and provides an interactive
environment for development and testing of
autonomous driving systems. CARLA enables
researchers to assess performance and train
autonomous driving systems using three main
approaches: a classical modular pipeline,

neural network training through imitation, and

neural network training through reinforcement
learning. Simulator’s architecture strikes a
balance between configuration flexibility and
simulation realism, leveraging high-quality
graphics and realistic physics provided by
Unreal Engine 4. System includes an
environmental design with three-dimensional
models of both static and dynamic objects,
along with support for diverse weather
conditions and lighting. Client sensors,
including cameras and depth sensors, can be
configured to obtain precise readings.
Performance of three different autonomous
driving methods was evaluated using CARLA,
including a classical modular pipeline, imitation
learning, and reinforcement learning. Results
revealed that performance is not perfect even in
simple tasks, and challenges escalate in new
environments and varied weather conditions.
Findings shed light on difficulties of generalizing
to new environments and different weather
conditions, providing a comparison between
three methods used in paper. In conclusion,
CARLA simulator offers research community an
opportunity for active engagement in exploring
and developing autonomous driving
technologies [3]

4. Zang et al. (2018) proposed an approach for
traffic sign recognition using deep learning
techniques for unmanned autonomous
vehicles. Study utilized MASTIF dataset, which
contains video clips captured by a camera
mounted on vehicle. Traffic sign detection tool
employed in this study is Faster R-CNN
approach, which is used to sense traffic signs in
each frame of video clips. Results were
aggregated using Mean Shift method for
temporal matching, representing each traffic
sign with quaternion numbers. Two quaternion
neural networks (QCNNs) were used to extract
spatial and temporal features, and these
features were fused to achieve a high-level

description of traffic signs in both domains.
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Experimental results demonstrated
effectiveness of proposed approach, comparing
favorably with other methods such as color
model, SVM-based decision support method,
and another deep learning approach. Proposed
approach showed superior performance in
traffic sign detection and recognition, improving
accuracy and efficiency compared to other
methods [4].

W. Gao, J. Tang, and T. Wang. (2021) study
divided 1512 images into training, validation,

and test sets in an 8:1:1 ratio. Evaluation

Raymond Muller and others (2022)
Model Dataset Results
Union (IoU) with
ground truth.
- Achieved an
- DRIVETRUTH: average
Randomly sampled precision of 77%
dataset with 500 objects at 50% IoU with
ground truth.

DaSiam
RPN

- Enhances
accuracy and
robustness in

object tracking.

- Improves
Kalman filter
predictions for

bounding boxes.

Dosovitskiy, A. et al. (2017)

Context - DRIVETRUTH: Dataset
ual Data with contextual
Usage information

metrics used were mAP (mean Average Model Best Dataset ~ Overall Success
Condition Rate
Precision) and FPS (Frames Per Second). Modular
. . L New Weather 67.25%
experiment was conducted on a system with a Pipeline (MP)
. . . . Imitati ..
single GeForce GTX 1080Ti graphics card with Le:;ianigogm Training 77.75%
11GB video memory, equipped with CUDA 10.0 Reinforceme
nt Learnin, Trainin 36.25%
and an Intel i5-9400F CPU with 16GB of RAM. ) g °
Python 3.6 was used as the coding environment. W. Gao, J. Tang, and T. Wang. (2021)
. . AP-
YOLOv4 was implemented using the Keras Mod AP- AP traff mojt\(i_c R
framework with TensorFlow backend, while el person car cLig le 4
ht
CenterNet and Faster-RCNN were implemented YOL oo 88.4 665 Lo, 659 | .
using PyTorch. For YOLOv4, parameters were Ov4 ’ 1% 6% : 6% :
. . . . Cent ,, 83.1 50.9 ,, 54.8
tuned using transfer learning, with specific erNet $9-56% 40" oo, 35.68% 547 12.25
settings for frozen and global training phases. Fast
. . er- o, 09.9 58.2 o, 92.6
CenterNet utilized a two-step training method RoN 93:12% g0 oo 29.37% oo 7.43
with pre-trained Hourglass backbone network N
weights fine-tuned on the dataset. Faster-RCNN Zang et al. (2018)
No.
utilized a VGG 16 backbone with specific anchor No. N N of
0. 0.
settings and training parameters. YOLOv4 TOf. of No. of NO- DetCor oo
" Tes of Cor of ?Ct rect sifica
achieved the highest mAP across all object Mod Datas nin 1 False ion ly .
el et g g Cla ISC: Dete Rat Cla ltqlotn
classes but had the lowest FPS. CenterNet and Sa m{; s:e ec?ci ction e ssifi (:/: )e
. 1 % d
Faster-RCNN had lower mAP but higher FPS H;}S) les ons ° %) gig
compared to YOLOv4. ns
. TS20
Overall, YOLOv4  demonstrated  higher QCcN 11 101 ) o _
detection accuracy but lower processing speed N (?ete)c 5
101
compared to CenterNet and Faster-RCNN ([8]. TS20
. : : QCN 10 58 99.
Table 1: Previous Studies Summary N (Detec ~ 7 -~ 583 7 31
Raymond Muller and others (2022) tion)
Model Dataset Results ngo
- Achieved an QCN (Class 633 - o7 - _ . 580 995.1
- DRIVETRUTH: Sample average ificati
YOLOv3 dataset with 500 objects  PTocrstont of on)
) 47.2% at 50%
Intersection over
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Raymond Muller and others (2022)

Model Dataset Results
TS20
10
QCN (Class 509 - - - - - -
ificati
on)

CARLA (Car Learning to Act)

CARLA, an open-source simulator for
autonomous driving research. CARLA has been
developed from the ground up to support
development, training, and validation of
autonomous urban driving systems. In addition
to open-source code and protocols, CARLA
provides open digital assets (urban layouts,
buildings, vehicles) that were created for this

purpose and can be used freely [3].

CARLA Architecture
Server Client
Unreal Python API
CARLA C++ API
Pl

TCP

| i ﬁ/

Figure. 1: CARLA client-server architecture [4].

Autonomous Vehicle System Architecture in
CARLA Environment:

1. Global Planner: The Global Planner is
responsible for determining the overall path of
the journey based on the set destination and
road conditions.

2. Waypoint Position Decision: Controls the
direction of the vehicle and specifies specific
locations along the path.

3. Obstacle Detection and Perception:
Recognizes obstacles in the environment and
enhances the vehicle's understanding of its
surroundings.

4. Sensors: Includes cameras, Global

Positioning System (GPS), speed measurement

units (Encoders), and wireless communication
technology (G4).

5. Self-Localization: Allows the vehicle to
accurately determine its position within the
environment.

6. Motion Control: Manages the vehicle's
control and regulates its movement based on
the decisions made.

7. Local Planner: Determines a short and local
path to assist in overcoming immediate
obstacles.

8. Collision Avoidance: Controls the vehicle's

movement to avoid collisions with obstacles.

These components collaborate to achieve a self-
driving system in the CARLA environment,
enabling the vehicle to control itself and adapt
its movement based on the surrounding

conditions and specified objectives.
X Global
Planner
Sensors —_
(Cameras, GPS, N P . N a)"P fil"l
IMU, Encoders, :/ erception ;_‘/ position
decision
. wgm | |
Self ~ )| Ccollision
Localization ‘ . ) Ll | Avoidance
- { \ 4 &=
! § Motion . |
S Control AN

Figure. 2. System architecture of autonomous vehicle [1].

Obstacle
detection

Weather Presets:

In CARLA, weather and lighting conditions can
be customized through a selection of predefined
settings. To choose a specific preset, adjust the
"Weatherld" key in the configuration file
"CarlaSettings.ini." The available presets are as
follows:

0 — Default, 1 - Clear Noon, 2 - Cloudy Noon, 3
- Wet Noon, 4 - Wet Cloudy Noon, 5 - Mid Rainy
Noon, 6 - Hard Rain Noon, 7 - Soft Rain Noon,
8 - Clear Sunset, 9 - Cloudy Sunset, 10 - Wet
Sunset, 11 - Wet Cloudy Sunset, 12 - Mid Rain
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Sunset, 13 - Hard Rain Sunset, 14 - Soft Rain
Sunset.

These presets offer a range of weather
conditions and lighting scenarios for simulation
purposes in the CARLA environment. To apply a
specific setting, refer to the corresponding

numerical identifier when configuring the

Weatherld parameter.

Figure.3. Some weather conditions in CARLA.

CAMERA IN CARLA:

CARLA uses a variety of camera types to
simulate driving scenes and artificial
intelligence applications, including:

1. RGB Camera: Type: RGB. Usage: Reproduces
images using tricolor technology. Applications:
Used for general vision and object recognition.
2. Depth Camera: Type: Depth. Usage:
Generates a depth map showing distance
between objects. Applications: Distance
measurement and object classification based on
depth.

3. Semantic Segmentation Camera: Type:
Semantic Segmentation. Usage: Reproduces an
image where a unique color is assigned to each
object category.

Applications: Accurate classification of objects
using colors.

4. DVS Camera: Type: Dynamic Vision Sensor
(DVS). Usage: Records dynamic changes in
lighting only. Applications: Efficient motion
tracking.

5. Grayscale Camera: Type: Grayscale. Usage:

Reproduces images in shades of gray.

Applications: Used for general vision with less
processing complexity.

6. Distorted RGB Camera: Type: Distorted
RGB. Usage: Reproduces images using tricolor
technology with intentional distortion to
simulate potential distortion effects.
Applications: Used to simulate image distortion

effects in realistic environments.

Cameras in CARLA are used to generate
simulation data for training artificial
intelligence models for self-driving systems [6].
Yolov5:

YOLOvS was proposed in 2020 by a person
named Glenn Jocher. The model used in the
study is YOLOvVS (You Only Look Once version
5), which is commonly employed for object
detection tasks in images and videos. YOLOvVS
is the fifth iteration of this model and is
considered one of the most efficient and fastest
models in this field.

Key features of YOLOVS:

1. Speed: YOLOVS is characterized by its high
speed in image processing and object detection
compared to many other models.

2. Accuracy: It offers a good balance between
speed and accuracy, making it suitable for real-
time object detection applications.

3. Ease of use: It provides an easy-to-use
interface and comes with numerous ready-to-
use examples, facilitating the training and
application process.

4. Customization: The model can be easily
modified to suit a wide range of applications by
changing parameters and retraining the model
on customized datasets.

In summary, YOLOVS is a robust and efficient
model for object detection, widely used in

various practical applications.

ICSELibya-2024

118



Object Detection Using Artificial Intelligence in Autonomous Vehicles....................... Bader N. Awedat

Backbone

map (C3, C4, and C5) generated by multiple

C5/32 G, } PS5,
C4/16 g 1132 > convolutions down sampling operations from
C§j/8 NN the feature extraction network to generate
InpuCtl/Zl—. ( BBoxes ) multiple new feature maps (P3, P4, and P5) for

detecting different scales targets [9].
Fig 4. default inference flowchart of

YOLOvV5(9].

Network Structure of YOLOvS
Generally speaking, the network structure of

YOLOVS refers to the backbone and neck.

1. Backbone: The backbone of YOLOVS is shown

in Figure 5. The main structure is the stacking

of multiple CBS (Conv + BatchNorm + SiLU)

modules and C3 modules, and finally one SPPF

module is connected. CBS module is used to Fig 6. Neck [9].

assist C3 module in feature extraction, while

SPPF module enhances the feature expression Feature fusion path of FPN is top-down. On this
ability of the backbone[9]. basis, PAN reintroduces a new bottom-up

feature fusion path, which further enhance

Backbone

@ cns a cns o SIPF
a% ey T e ooy amn [ g

: I - [91.

s
ae Lo ) S O e ), | . .
e " - L Experiment and result analysis

detection accuracy for different scales objects

Neck 1. Parameter settings: The  default

hyperparameters for model were:

Table 2: hyperparameters for model.

Parameters Value
1r0 0.01
Fig 5. Defaul k f YOLOV5[9 Irf 0.01
ig 5. Default network structure o v5[9]. momentum 0.937
weight_decay 0.0005
. warmup_epochs 3.0
Therefore, in the backbone of YOLOVS, the most warmup_momentum 0.8
important layer is the C3 module. The basic idea warmup_bias_Ir 0.1
of C3 comes from CSPNet (cross stage partial 12(1): 00'055
networks. C3 can actually be regarded as the cls_pw 1.0
j 1.
specific implementation of CSPNet. YOLOvS ob(J?I_DIJa W 1.8
uses the idea of CSPNet to build the C3 module, iou_t 0.2
. anchor_t 4.0
which not only ensures that the backbone has hsv_h 0.015
excellent feature extraction ability, but also hsv_s 0.7
. . . hsv_v 0.4
curbs the problem of gradient information translate 01
duplication in the backbone [9]. scale 0.5
2. Neck: In neck, YOLOV5S the methods of liplr 0.5
. Neck: In neck, v5 uses the methods o mosaic 10
FPN and PAN, as shown in Figure 6. The basic batch 32
epochs 100

idea of FPN is to up-sampling the output feature
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The YOLOvS5s model summary is as follows:

Table 3: model summary

Parameters weight loss
Layers 157
Parameters 7,037,095
Gradients 0
GFLOPs 15.8

2. Experimental Setup:

The experiments were conducted using Google
Colab with a T4 GPU to ensure efficient training
and evaluation of the model. The details of the
hardware and software environment are as
follows:

Hardware:

GPU: T4 GPU provided by Google Colab.

RAM: 16GB (Google Colab environment).
Software:

CUDA Version: 10.0 (provided by Google
Colab).

Python Version: 3.6.

Deep Learning Framework: PyTorch for
YOLOVS.

3. Dataset:

The dataset used for training and evaluation
consisted of 1600 images, which were divided
into training, validation, and test sets as
follows:

Training Set: 1120 images (70%)

Validation Set: 320 images (20%)

Test Set: 160 images (10%)

The dataset included annotations for various

object categories, which were used to train and

evaluate the model's performance.

Fig 7: Sample Images from the Dataset

4. Evaluation Metrics:

The performance of the YOLOvSs model was
evaluated using the following metrics:

P (Precision): Precision measures the
proportion of true positive detections out of the
total positive detections made by the model. A
higher precision indicates fewer false positives.
R (Recall): Recall measures the proportion of
true positive detections out of the actual total
positive instances. A higher recall indicates
fewer false negatives.

mAPSO0 (mean Average Precision at IoU 0.50):
This metric averages the precision scores at an
IoU threshold of 0.50 across all classes. It
provides a measure of how well the model
detects objects at a specific overlap threshold.
mAPS50-95 (mean Average Precision at IoU
0.50 to 0.95): This metric averages the
precision scores at multiple IoU thresholds
(from 0.50 to 0.95 in increments of 0.05). It
gives a comprehensive evaluation of the model's
performance across various levels of localization
accuracy.

5. Results: The trained YOLOvS5s model was
evaluated on the test set. The detailed
performance metrics, including precision,
recall, mAP50, and mAP50-95 for each class,

are summarized below:

Table 4: Performance Metrics on Test Data

Metric Value
Precision (P) 0.898
Recall (R) 0.827
mAPS50 0.900
mAPS50-95 0.583

Table 3 shows the overall performance of the
YOLOvSs model on the test data. Precision and

recall values indicate the model's accuracy in

ICSELibya-2024

120



Object Detection Using Artificial Intelligence in Autonomous Vehicles....................... Bader N. Awedat

detecting objects correctly, while mAPS0 and
mAPS50-95 metrics provide a comprehensive
measure of the model's detection performance

across different IoU thresholds.

(lass ’

Images Instances P R mAP58  mAP:
all 32 557 0.898 0.827 0.9
bike 32 29 8.912 0.715 0.794
motobike 328 26 8.987 8.754 8.912
person 328 1 8.928 0.912 8.956
traffic_light_green 328 59 8.965 9.941 8.976
traffic_light_orange 320 24 1 0.758 8.937
traffic_light_red 328 63 6.919 0.723 8.934
traffic_sign_30 328 50 8.967 0.9 0.977
traffic_sign 60 328 36 8.911 09.853 0.909
traffic_sign_90 328 9 0.58 8.778 0.678
vehicle 32 190 0.892 0.874 8.925

Fig 8: Class-Specific Performance on Test
Data.

Figure 8 illustrates precision, recall, and mAP
metrics for each object class in test dataset.
Figure helps in understanding how well model
performs for each specific category, highlighting
strengths and potential areas for improvement.
Trained YOLOvSs model was also evaluated on
validation set.

Detailed including

precision, recall, mAP50, and mAPS50-95 for

performance metrics,
each class, are summarized below:
Table 5: Performance Metrics on Validation

Data.

Metric Value

Precision (P) 0.891

Recall (R) 0.801

mAPS0 0.880

mAPS50-95 0.542
Results indicate that the YOLOvSs model
achieves high performance in terms of
precision, recall, and mAP metrics across

various object categories. Table 4 presents
overall performance of the YOLOvSs model on
the validation data. Similar to the test data
results, these metrics provide insights into the
model's accuracy and detection capabilities on
unseen data used for tuning hyperparameters

and early stopping.

58-95:

0.583
0.446
0.685
8,551

0.52
8.535
8.521
8.771
8.711
0.586
0.663

Class Images Instances P R mAPS®  mAP58-95:

all 160 292 8.891 8.801 0.88 0.542

bike 160 15 0.824 0.467 .65 8.336

motobike 160 16 8.905 8.812 0.872 .52

person 160 36 0.844 .889 0.94 0.466
traffic_light_green 160 37 1 0.917 2.943 0.518
traffic_light_orange 168 11 1 6.806 0.986 0.475
traffic_light_red 160 29 0.919 8.785 0.91 0.44
traffic_sign_38 160 19 0.894 0.947 8.947 8.756
traffic_sign_68 160 14 0.868 0.937 8.961 9.714[
traffic_sign 90 160 5 0.764 0.6 0.778 0.626
vehicle 160 110 0.887 8.855 2,889 .57

Fig 9: Class-Specific Performance on Validation

Data.

Figure 9 depicts the precision, recall, and mAP
metrics for each object class in the validation
dataset. This figure helps visualize the model's
performance different

the

across categories,

ensuring model is well-tuned and
generalizes well on new data.

Training Performance: In addition to
evaluating the model on test and validation sets,
various performance metrics and curves were

analyzed during the training process.

Confusion Matrix: Figure 10 shows confusion
matrix, providing a detailed look at model's
predictions versus actual labels, which helps

identify specific classes that may be causing

confusion.

Confusion Matrix

bike

molobike - 3

parson -

traffic_light_areen

LraMmic_lignt_orange -

traffic_light_red

Predicted

Frafic_sign_30 -

Lrarfic_sign_60 - ooz o 013
traffic sign 90 asr s a1a
-0z

vehicle - 17

background - .11 o

bike

mataaikz -
person -
gn_30 -

_sig
wehicle
background -

traftic_si
raffic. sign 60
traffic_sign_%0-

trafic_light_red -

Lraflic lighl graen -
braffic_light_orangs -

Fl
&

Fig 10: Confusion Matrix.
Precision-Recall Curve: Figure 11 illustrates
the precision-recall (PR) curve, showing the
trade-off between precision and recall for

different thresholds.
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Precision-Recall Curve

1.0
— bike 0.754
—— molobike 0.912
—— person 0.956
—— uamic_iignt_green 0.976
o8 traffic_light orangs 0.937
traffic_light_red 0.934
traffic_sign_30 0.97 7
—— traffic_sign_80 0,909
06 —— wamic_sign_90 0.678
= —— wehicle 0.825
§ — 4l clas5e3 0.900 MAPGA.5.
=
0.4
0.2
0.0
0.0

Fig 11: PR Curve.
F1 Curve: Figure 12 shows the F1 curve,

highlighting the harmonic mean of precision
and recall across different thresholds.

F1-Canfidence Curve

— bike

—— molobike

—— person

—— traffic_light_green
traffic_light_orange

—— traffic light red

—— tralfic_sign_30

—— traffic_sign_60

—— traffic_sign 90

—— vehicle

= all classes 0,86 at 0,533

Confidence

Fig 12: F1 Curve.
Training Results: Figure 13 provides an

overview of the training results, including loss
and accuracy metrics over epochs,
demonstrating the model's learning progress
and convergence. These figures together provide
a comprehensive overview of the model's
performance, both during training and on the
evaluation sets, allowing for a thorough analysis
of the YOLOvSs model's strengths and areas for

potential improvement.

trainox_Joss okl s wraiils_loss metricsiorecision et catrecs

e i
na1s - H on 08 ns
0w sl
0ois s - s
a0 nae 0ok
o 0 0
oon 012 o
oz
one 0oi0 0z az
0o
na0s 0o an
o w m 0 w10 0 B 0 W 1w 0 w10
walibex_loss alfubi_loss valiels_foss mebissfmap_0.5 melricsmaP_0.5:0.95
u 0.0¢ 06
08 as
0.0 o6
03
0
.08 o
nnd e 0
anz
008 0z
- . ooz 0> .
- an an
E L o s 10 o 2 1m0 o = m 0 o 10

Fig 13: Training Results.

Training Data Samples: To provide an overview
of the training data, we present a few samples

from the training batches.

DIRQATEBRRIT136¢

Fig 13: Sample Images from Training Batches.
Validation Data Labels and Predictions To
evaluate the model's performance on the
validation set, we compare the actual labels

with the model's predictions.

Fig 14: Actual Labels in Validation Batches.

555_jpg .11 493510636400 AES I pRARORME cbeO g T T P T p——ry

[ 60 1.0

-

Ahrea

- o 3 |
o miamesgn o 0s b'wc‘mm‘r 4505

[ gpa rmaasaeieso

]

— |

Fig 15: Model Predictions in Validation
Batches.
These figures provide a visual comparison of the

ground truth and the predictions made by the
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model, highlighting its performance and areas
where it may need improvement.

Validation Performance: During the validation
phase, the model's performance was thoroughly
assessed using various performance metrics
and visualizations.

Confusion Matrix: Figure 16 presents the
confusion matrix generated during the
validation phase. This matrix provides a
detailed overview of the model's predictions
compared to the actual labels in the validation
dataset. It helps identify classes where the
model may be struggling or making errors,

thereby guiding further refinement efforts.

e light areen-

brattc I ght arange -

B
L eme_igne rea
i

bt sigr_30 -

[

b
mombke 3
e

Fig 16: Confusion Matrix.

Precision-Recall Curve: Figure 17 illustrates
the precision-recall (PR) curve computed during
the validation process. This curve showcases
the trade-off between precision and recall at
different decision thresholds. It offers insights
into how effectively the model balances
precision and recall for object detection tasks on

the validation dataset.
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Fig 17: Precision-Recall Curve.

F1 Curve: Figure 18 displays the F1 curve
calculated during the validation phase. The F1
curve depicts the harmonic mean of precision
and recall across various decision thresholds.
Analyzing this curve helps gauge the model's
overall performance and convergence during

validation.
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Fig 18: F1 Curve.

Precision Curve: Figure 19 represents the
precision curve obtained from the validation
phase. This curve plots precision against
different decision thresholds and provides a
closer look at the model's precision performance

on the validation dataset.
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Fig 19: Precision Curve.

Recall Curve: Figure 20 showcases the recall
curve derived from the validation phase. By
plotting recall against different decision
thresholds, this curve offers insights into the
model's ability to correctly identify objects of

interest across various recall levels during

validation.
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Fig 20: Recall Curve.

These visualizations collectively offer a
comprehensive understanding of the YOLOvSs
model's performance during the validation
phase, facilitating an in-depth analysis of its
strengths and areas for potential enhancement.
Results Analysis:

Overall Precision and Recall: We observed
that both precision and recall in both training
and validation results range around values of
0.89 and 0.8, respectively. This indicates that
the model can effectively identify objects with
moderate efficiency, but there are some gaps

that can be improved.

Mean Average Precision (mAP): The values of
mAP50 and mAP50-95 show that the model
exhibits good performance in recognizing
objects at 50% and 95% IoU (Intersection over
Union). However, there seems to be a slight
decline in validation performance compared to
training.

Individual Class Analysis: The performance of
individual classes ranges from good to excellent,
with some classes like "traffic sign 30" and
"traffic_light_green" showing excellent
performance in both training and validation
results. However, there are some classes that
appear to perform less well in validation
compared to training, such as "bike" and
"person".

Speed Analysis: The model appears to respond
well with acceptable processing speed, ranging
between 0.4 milliseconds for preprocessing and
10.5 milliseconds for inference.

Overall, the model demonstrates good
performance on both datasets, but there are
some gaps that can be improved, especially in
certain classes like '"bike" and "person'".
Performance can be enhanced by addressing

some issues such as data imbalance and

improving training settings.

Conclusion and Recommendations

In the realm of autonomous driving, accurate
object detection is paramount for ensuring the
safety and efficiency of vehicles. The YOLOvS
model exhibits commendable performance in
identifying objects, laying a solid foundation for
its integration into autonomous vehicle
systems. However, to fully realize its potential,
several key areas warrant attention.

1. Enhanced Safety: A robust object detection
system is crucial for the safety of autonomous
vehicles, as it enables them to perceive and
react to their surroundings accurately.
Addressing data imbalances and fine-tuning

training settings can bolster the model's ability
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to detect objects across diverse scenarios,
mitigating risks on the road.

2. Efficient Navigation: Accurate object
detection not only enhances safety but also
facilitates smoother navigation. By refining
class-specific performance and optimizing
model complexity, the YOLOvS model can better
discern complex traffic scenarios, improving the
vehicle's decision-making capabilities and
ensuring seamless interactions with its
environment.

3. Real-world Deployment: As autonomous
driving technologies inch closer to widespread
adoption, the deployment of reliable object
detection systems becomes increasingly critical.
Therefore, it's imperative to assess the model's
performance in real-world scenarios,
addressing deployment challenges and refining
its effectiveness in practical applications.

In summary, the significance of precise object
detection in autonomous vehicles cannot be
overstated. By heeding these recommendations
and continuously refining the YOLOvS model,
we pave the way for safer, more efficient
autonomous driving experiences, bringing us
closer to a future where road travel is not only
autonomous but also remarkably secure and
reliable.
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Abbreviations and Acronyms

CARLA: Car Learning to Act, LiDAR: Light
Detection and Ranging, MASTIF: MArine
STation Imaging Facility, R-CNN: Region-based
Convolutional Neural Network, QCNNSs:
Quaternion Convolutional Neural Networks,
SVM: Support Vector Machine, mAP: mean
Average Precision, FPS: Frames Per Second,
YOLOVS: You Only Look Once, VGG16: Visual
Geometry Group, CSPNet: Cross Stage Partial
Network, P: Precision, R: Recall, mAP50: mean

Average Precision: IoU: Intersection over Union,
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