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Abstract: This research paper focuses on object detection, such as bicycles, motorcycles, persons, traffic 
lights, traffics signs, and vehicles within the framework of autonomous driving systems in the CARLA 
environment. Currently, object detection in autonomous driving primarily relies on actual autonomous 
vehicles, which face challenges such as high costs and real-time implementation difficulties. The open-

source CARLA system enables precise and cost-effective experimentation. In this paper, the deep 
learning model YOLOv5 was used, yielding good results in both training and validation datasets. A total 
of 1560 different images were used in the training process, divided into 1120 images for training, 160 
images for testing, and 320 images for validation. The training results showed a Precision (P) of 0.898, 
Recall (R) of 0.827, mAP@50 of 0.900, and mAP@50-95 of 0.583. In the validation results, the Precision 
(P) was 0.891, Recall (R) was 0.801, mAP@50 was 0.880, and mAP@50-95 was 0.542. These results 
indicate that the model is capable of accurately detecting and retrieving objects effectively. 

 
Keywords: (Object Detection, Artificial Intelligence, Autonomous Vehicles, CARLA, mean Average 

Precision, traffic lights, traffics signs.

Introduction 

Self-driving cars are living in a technologically 

transformative era, as scientists and engineers 

strive to enhance the performance of these 

systems to ensure the safety and efficiency of 

autonomous navigation. Object detection 

emerges as a crucial element in this context, 

requiring leading vehicles to interact efficiently 

with these objects to ensure safe and effective 

traffic control. Amid the rapid advancements in 

artificial intelligence-based autonomous vehicle 

technologies, understanding the behavior of 

objects in diverse weather scenarios has become 

imperative to ensure the safety of vehicles and 

pedestrians. Simulation systems such as 

CARLA provide valuable means to realistically 

and effectively address these challenges. 

RELATED WORK 

1. In this research paper by S. Malik, M.A. 

Khan, and H. El-Sayed (2022), an in-depth 

exploration of open-source autonomous driving 

simulator CARLA was conducted. CARLA 

stands out as a robust tool for development and 

testing of autonomous driving systems within a 

virtual urban environment. Simulator is 

distinguished by its simulation engine, which is 

built on Unreal Engine 4, and it supports 

crucial features such as sensor configuration 

and definition of environmental conditions. 

Paper provided a comprehensive overview of 

simulation’s structure, shedding light on 

intricacies of virtual environment, 

encompassing elements like roads, buildings, 

and various other components. It also detailed 

configurability of weather conditions and 

terrains. Research extensively covered array of 

available sensors in CARLA, including cameras, 

LiDAR, and radar, elucidating their roles in 

training autonomous driving systems. Special 

emphasis was placed on distinctive features 

within CARLA, such as Traffic Manager, 

Scenario Runner, and Responsibility Sensitive 

Safety. Paper delved into different releases of 

CARLA, showcasing their updates and 
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enhanced features. In conclusion carried out a 

comparative analysis between CARLA and other 

simulators. It effectively demonstrated how 

CARLA serves as a valuable tool for training 

intelligent models for autonomous driving 

systems. Paper also highlighted diverse 

applications of CARLA in areas like imitation 

learning, cooperative driving, and interactions 

within driving environments. Throughout 

discussion, paper underscored significance of 

recognizing that while simulation cannot 

replace real-road experiences, it indeed provides 

a safe and effective environment for testing and 

advancing autonomous driving technologies [1]. 

2. In a study conducted by Raymond Muller and 

others (2022), research was carried out using 

DRIVETRUTH system. DRIVETRUTH is a data 

collection framework that relies on CARLA 

simulator to gather and automatically label 

autonomous driving data. It extends capabilities 

of Semantic LiDAR to compute three-

dimensional bounding boxes for static objects, 

including traffic signals, and also retrieves 

customized bounding boxes for dynamic 

objects. DRIVETRUTH enables tracking of 

context for each object, providing additional 

support for autonomous driving systems, 

particularly in safety and security applications. 

Research demonstrates that DRIVETRUTH can 

be used to automatically collect simulation data 

that simulates real-world driving conditions, 

with a focus on classifying and tracking traffic 

signals [2] 

3. In paper by Dosovitskiy, A. et al. (2017), an 

open autonomous driving simulator called 

CARLA was introduced. This simulator is built 

on Unreal Engine 4 and provides an interactive 

environment for development and testing of 

autonomous driving systems. CARLA enables 

researchers to assess performance and train 

autonomous driving systems using three main 

approaches: a classical modular pipeline, 

neural network training through imitation, and 

neural network training through reinforcement 

learning. Simulator’s architecture strikes a 

balance between configuration flexibility and 

simulation realism, leveraging high-quality 

graphics and realistic physics provided by 

Unreal Engine 4. System includes an 

environmental design with three-dimensional 

models of both static and dynamic objects, 

along with support for diverse weather 

conditions and lighting. Client sensors, 

including cameras and depth sensors, can be 

configured to obtain precise readings. 

Performance of three different autonomous 

driving methods was evaluated using CARLA, 

including a classical modular pipeline, imitation 

learning, and reinforcement learning. Results 

revealed that performance is not perfect even in 

simple tasks, and challenges escalate in new 

environments and varied weather conditions. 

Findings shed light on difficulties of generalizing 

to new environments and different weather 

conditions, providing a comparison between 

three methods used in paper. In conclusion, 

CARLA simulator offers research community an 

opportunity for active engagement in exploring 

and developing autonomous driving 

technologies [3] 

4. Zang et al. (2018) proposed an approach for 

traffic sign recognition using deep learning 

techniques for unmanned autonomous 

vehicles. Study utilized MASTIF dataset, which 

contains video clips captured by a camera 

mounted on vehicle. Traffic sign detection tool 

employed in this study is Faster R-CNN 

approach, which is used to sense traffic signs in 

each frame of video clips. Results were 

aggregated using Mean Shift method for 

temporal matching, representing each traffic 

sign with quaternion numbers. Two quaternion 

neural networks (QCNNs) were used to extract 

spatial and temporal features, and these 

features were fused to achieve a high-level 

description of traffic signs in both domains. 
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Experimental results demonstrated 

effectiveness of proposed approach, comparing 

favorably with other methods such as color 

model, SVM-based decision support method, 

and another deep learning approach. Proposed 

approach showed superior performance in 

traffic sign detection and recognition, improving 

accuracy and efficiency compared to other 

methods [4]. 

W. Gao, J. Tang, and T. Wang. (2021) study 

divided 1512 images into training, validation, 

and test sets in an 8:1:1 ratio. Evaluation 

metrics used were mAP (mean Average 

Precision) and FPS (Frames Per Second). 

experiment was conducted on a system with a 

single GeForce GTX 1080Ti graphics card with 

11GB video memory, equipped with CUDA 10.0 

and an Intel i5-9400F CPU with 16GB of RAM. 

Python 3.6 was used as the coding environment. 

YOLOv4 was implemented using the Keras 

framework with TensorFlow backend, while 

CenterNet and Faster-RCNN were implemented 

using PyTorch. For YOLOv4, parameters were 

tuned using transfer learning, with specific 

settings for frozen and global training phases. 

CenterNet utilized a two-step training method 

with pre-trained Hourglass backbone network 

weights fine-tuned on the dataset. Faster-RCNN 

utilized a VGG16 backbone with specific anchor 

settings and training parameters. YOLOv4 

achieved the highest mAP across all object 

classes but had the lowest FPS. CenterNet and 

Faster-RCNN had lower mAP but higher FPS 

compared to YOLOv4.  

 Overall, YOLOv4 demonstrated higher 

detection accuracy but lower processing speed 

compared to CenterNet and Faster-RCNN [8]. 

Table 1: Previous Studies Summary 

Raymond Muller and others (2022) 
Model Dataset Results 

YOLOv3 
- DRIVETRUTH: Sample 

dataset with 500 objects 

- Achieved an 
average 

precision of 
47.2% at 50% 

Intersection over 

Raymond Muller and others (2022) 
Model Dataset Results 

Union (IoU) with 
ground truth. 

DaSiam
RPN 

- DRIVETRUTH: 
Randomly sampled 

dataset with 500 objects 

- Achieved an 

average 
precision of 77% 
at 50% IoU with 
ground truth. 

Context

ual Data 
Usage 

- DRIVETRUTH: Dataset 

with contextual 
information 

- Enhances 
accuracy and 
robustness in 

object tracking. 

- Improves 
Kalman filter 

predictions for 

bounding boxes. 

Dosovitskiy, A. et al. (2017) 

Model 
Best Dataset 

Condition 
Overall Success 

Rate 

Modular 
Pipeline (MP) 

New Weather 67.25% 

Imitation 
Learning (IL) 

Training 77.75% 

Reinforceme
nt Learning 

(RL) 
Training 36.25% 

W. Gao, J. Tang, and T. Wang. (2021) 

Mod
el 

AP-
person 

AP-
car 

AP-
traffi
cLig
ht 

AP-
motorcyc

le 
mAP FPS 

YOL
Ov4 

75.37% 
88.4
1% 

66.5
6% 

33.48% 
65.9
6% 

16.31 

Cent
erNet 

49.56% 
83.1
4% 

50.9
6% 

35.68% 
54.8
3% 

12.25 

Fast
er-

RCN
N 

53.12% 
69.9
0% 

58.2
8% 

29.37% 
52.6
7% 

7.43 

Zang et al. (2018) 

Mod
el  

Datas
et 

No. 
of 

Trai

nin
g 

Sa
mpl

es 

No. 
of 

Tes
t 

Sa
mp

les 

No. 

of 
Cla
sse
s 

No. 
of 

Cor
rect 
Det
ecti

ons 

No. 
of 

False 
Dete
ction

s 

Det
ect

ion 
Rat
e 

(%) 

No. 
of 

Cor
rect

ly 
Cla
ssifi
ed 

Sig
ns 

Clas

sifica
tion 
Rate 
(%) 

QCN

N 

TS20
11 

(Detec
tion) 

101

5 
- - - - - - - 

QCN

N 

TS20
10 

(Detec
tion) 

- 
58

7 
- 583 7 

99.

31 
- - 

QCN
N 

TS20

09 
(Class
ificati
on) 

643
0 

- 277 - - - 582 
99.1

5 
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Raymond Muller and others (2022) 
Model Dataset Results 

QCN

N 

TS20
10 

(Class

ificati
on) 

- 
59

0 
- - - - - - 

 

CARLA (Car Learning to Act) 

CARLA, an open-source simulator for 

autonomous driving research. CARLA has been 

developed from the ground up to support 

development, training, and validation of 

autonomous urban driving systems. In addition 

to open-source code and protocols, CARLA 

provides open digital assets (urban layouts, 

buildings, vehicles) that were created for this 

purpose and can be used freely [3]. 

 

Figure. 1: CARLA client-server architecture [4]. 

Autonomous Vehicle System Architecture in 

CARLA Environment: 

1. Global Planner: The Global Planner is 

responsible for determining the overall path of 

the journey based on the set destination and 

road conditions. 

2. Waypoint Position Decision: Controls the 

direction of the vehicle and specifies specific 

locations along the path. 

3. Obstacle Detection and Perception: 

Recognizes obstacles in the environment and 

enhances the vehicle's understanding of its 

surroundings. 

4. Sensors: Includes cameras, Global 

Positioning System (GPS), speed measurement 

units (Encoders), and wireless communication 

technology (G4). 

5. Self-Localization: Allows the vehicle to 

accurately determine its position within the 

environment. 

6. Motion Control: Manages the vehicle's 

control and regulates its movement based on 

the decisions made. 

7. Local Planner: Determines a short and local 

path to assist in overcoming immediate 

obstacles. 

8. Collision Avoidance: Controls the vehicle's 

movement to avoid collisions with obstacles. 

These components collaborate to achieve a self-

driving system in the CARLA environment, 

enabling the vehicle to control itself and adapt 

its movement based on the surrounding 

conditions and specified objectives. 

 

Figure. 2. System architecture of autonomous vehicle [1]. 

Weather Presets: 

In CARLA, weather and lighting conditions can 

be customized through a selection of predefined 

settings. To choose a specific preset, adjust the 

"WeatherId" key in the configuration file 

"CarlaSettings.ini." The available presets are as 

follows: 

0 – Default, 1 - Clear Noon, 2 - Cloudy Noon, 3 

- Wet Noon, 4 - Wet Cloudy Noon, 5 - Mid Rainy 

Noon, 6 - Hard Rain Noon, 7 - Soft Rain Noon, 

8 - Clear Sunset, 9 - Cloudy Sunset, 10 - Wet 

Sunset, 11 - Wet Cloudy Sunset, 12 - Mid Rain 
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Sunset, 13 - Hard Rain Sunset, 14 - Soft Rain 

Sunset. 

These presets offer a range of weather 

conditions and lighting scenarios for simulation 

purposes in the CARLA environment. To apply a 

specific setting, refer to the corresponding 

numerical identifier when configuring the 

WeatherId parameter. 

 

Figure.3. Some weather conditions in CARLA. 

CAMERA IN CARLA: 

CARLA uses a variety of camera types to 

simulate driving scenes and artificial 

intelligence applications, including: 

1. RGB Camera: Type: RGB. Usage: Reproduces 

images using tricolor technology. Applications: 

Used for general vision and object recognition.  

2. Depth Camera: Type: Depth. Usage: 

Generates a depth map showing distance 

between objects. Applications: Distance 

measurement and object classification based on 

depth.  

3. Semantic Segmentation Camera: Type: 

Semantic Segmentation. Usage: Reproduces an 

image where a unique color is assigned to each 

object category.  

Applications: Accurate classification of objects 

using colors.  

4. DVS Camera: Type: Dynamic Vision Sensor 

(DVS). Usage: Records dynamic changes in 

lighting only. Applications: Efficient motion 

tracking.  

5. Grayscale Camera: Type: Grayscale. Usage: 

Reproduces images in shades of gray. 

Applications: Used for general vision with less 

processing complexity.  

6. Distorted RGB Camera: Type: Distorted 

RGB. Usage: Reproduces images using tricolor 

technology with intentional distortion to 

simulate potential distortion effects. 

Applications: Used to simulate image distortion 

effects in realistic environments. 

Cameras in CARLA are used to generate 

simulation data for training artificial 

intelligence models for self-driving systems [6]. 

Yolov5: 

YOLOv5 was proposed in 2020 by a person 

named Glenn Jocher. The model used in the 

study is YOLOv5 (You Only Look Once version 

5), which is commonly employed for object 

detection tasks in images and videos. YOLOv5 

is the fifth iteration of this model and is 

considered one of the most efficient and fastest 

models in this field. 

Key features of YOLOv5: 

1. Speed: YOLOv5 is characterized by its high 

speed in image processing and object detection 

compared to many other models. 

2. Accuracy: It offers a good balance between 

speed and accuracy, making it suitable for real-

time object detection applications. 

3. Ease of use: It provides an easy-to-use 

interface and comes with numerous ready-to-

use examples, facilitating the training and 

application process. 

4. Customization: The model can be easily 

modified to suit a wide range of applications by 

changing parameters and retraining the model 

on customized datasets. 

In summary, YOLOv5 is a robust and efficient 

model for object detection, widely used in 

various practical applications. 
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Fig 4. default inference flowchart of 

YOLOv5[9]. 

Network Structure of YOLOv5 

Generally speaking, the network structure of 

YOLOv5 refers to the backbone and neck. 

1. Backbone: The backbone of YOLOv5 is shown 

in Figure 5. The main structure is the stacking 

of multiple CBS (Conv + BatchNorm + SiLU) 

modules and C3 modules, and finally one SPPF 

module is connected. CBS module is used to 

assist C3 module in feature extraction, while 

SPPF module enhances the feature expression 

ability of the backbone[9]. 

 

Fig 5. Default network structure of YOLOv5[9]. 

 

Therefore, in the backbone of YOLOv5, the most 

important layer is the C3 module. The basic idea 

of C3 comes from CSPNet (cross stage partial 

networks. C3 can actually be regarded as the 

specific implementation of CSPNet. YOLOv5 

uses the idea of CSPNet to build the C3 module, 

which not only ensures that the backbone has 

excellent feature extraction ability, but also 

curbs the problem of gradient information 

duplication in the backbone [9]. 

2. Neck: In neck, YOLOv5 uses the methods of 

FPN and PAN, as shown in Figure 6. The basic 

idea of FPN is to up-sampling the output feature 

map (C3, C4, and C5) generated by multiple 

convolutions down sampling operations from 

the feature extraction network to generate 

multiple new feature maps (P3, P4, and P5) for 

detecting different scales targets [9]. 

 

Fig 6. Neck [9]. 

Feature fusion path of FPN is top-down. On this 

basis, PAN reintroduces a new bottom-up 

feature fusion path, which further enhance 

detection accuracy for different scales objects 

[9]. 

Experiment and result analysis 

1. Parameter settings: The default 

hyperparameters for model were: 

Table 2: hyperparameters for model. 

Parameters Value 

lr0 0.01 

lrf 0.01 

momentum 0.937 

weight_decay 0.0005 

warmup_epochs 3.0 

warmup_momentum 0.8 

warmup_bias_lr 0.1 

box 0.05 

cls 0.5 

cls_pw 1.0 

obj 1.0 

obj_pw 1.0 

iou_t 0.2 

anchor_t 4.0 

hsv_h 0.015 

hsv_s 0.7 

hsv_v 0.4 

translate 0.1 

scale 0.5 

fliplr 0.5 

mosaic 1.0 

batch 32 

epochs 100 

 

https://www.mdpi.com/1424-8220/22/15/5817#fig_body_display_sensors-22-05817-f003
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The YOLOv5s model summary is as follows:  

Table 3: model summary 

Parameters weight loss 

Layers 157  

Parameters  7,037,095 

Gradients 0 
GFLOPs 15.8 

 

2. Experimental Setup: 

The experiments were conducted using Google 

Colab with a T4 GPU to ensure efficient training 

and evaluation of the model. The details of the 

hardware and software environment are as 

follows: 

Hardware: 

GPU: T4 GPU provided by Google Colab. 

RAM: 16GB (Google Colab environment). 

Software: 

CUDA Version: 10.0 (provided by Google 

Colab). 

Python Version: 3.6. 

Deep Learning Framework: PyTorch for 

YOLOv5. 

3. Dataset: 

The dataset used for training and evaluation 

consisted of 1600 images, which were divided 

into training, validation, and test sets as 

follows: 

Training Set: 1120 images (70%) 

Validation Set: 320 images (20%) 

Test Set: 160 images (10%) 

The dataset included annotations for various 

object categories, which were used to train and 

evaluate the model's performance. 

 

Fig 7: Sample Images from the Dataset 

4. Evaluation Metrics: 

The performance of the YOLOv5s model was 

evaluated using the following metrics: 

P (Precision): Precision measures the 

proportion of true positive detections out of the 

total positive detections made by the model. A 

higher precision indicates fewer false positives. 

R (Recall): Recall measures the proportion of 

true positive detections out of the actual total 

positive instances. A higher recall indicates 

fewer false negatives. 

mAP50 (mean Average Precision at IoU 0.50): 

This metric averages the precision scores at an 

IoU threshold of 0.50 across all classes. It 

provides a measure of how well the model 

detects objects at a specific overlap threshold. 

mAP50-95 (mean Average Precision at IoU 

0.50 to 0.95): This metric averages the 

precision scores at multiple IoU thresholds 

(from 0.50 to 0.95 in increments of 0.05). It 

gives a comprehensive evaluation of the model's 

performance across various levels of localization 

accuracy. 

5. Results: The trained YOLOv5s model was 

evaluated on the test set. The detailed 

performance metrics, including precision, 

recall, mAP50, and mAP50-95 for each class, 

are summarized below: 

 

 

Table 4: Performance Metrics on Test Data 

Metric Value 

Precision (P) 0.898 

Recall (R) 0.827 

mAP50 0.900 

mAP50-95 0.583 

Table 3 shows the overall performance of the 

YOLOv5s model on the test data. Precision and 

recall values indicate the model's accuracy in 
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detecting objects correctly, while mAP50 and 

mAP50-95 metrics provide a comprehensive 

measure of the model's detection performance 

across different IoU thresholds. 

 

Fig 8: Class-Specific Performance on Test 

Data. 

Figure 8 illustrates precision, recall, and mAP 

metrics for each object class in test dataset. 

Figure helps in understanding how well model 

performs for each specific category, highlighting 

strengths and potential areas for improvement. 

Trained YOLOv5s model was also evaluated on 

validation set.  

Detailed performance metrics, including 

precision, recall, mAP50, and mAP50-95 for 

each class, are summarized below: 

Table 5: Performance Metrics on Validation 

Data. 

Metric Value 

Precision (P) 0.891 

Recall (R) 0.801 

mAP50 0.880 

mAP50-95 0.542 

Results indicate that the YOLOv5s model 

achieves high performance in terms of 

precision, recall, and mAP metrics across 

various object categories. Table 4 presents 

overall performance of the YOLOv5s model on 

the validation data. Similar to the test data 

results, these metrics provide insights into the 

model's accuracy and detection capabilities on 

unseen data used for tuning hyperparameters 

and early stopping. 

 

Fig 9: Class-Specific Performance on Validation 

Data. 

Figure 9 depicts the precision, recall, and mAP 

metrics for each object class in the validation 

dataset. This figure helps visualize the model's 

performance across different categories, 

ensuring the model is well-tuned and 

generalizes well on new data. 

Training Performance: In addition to 

evaluating the model on test and validation sets, 

various performance metrics and curves were 

analyzed during the training process. 

Confusion Matrix: Figure 10 shows confusion 

matrix, providing a detailed look at model's 

predictions versus actual labels, which helps 

identify specific classes that may be causing 

confusion. 

Fig 10: Confusion Matrix. 

Precision-Recall Curve: Figure 11 illustrates 

the precision-recall (PR) curve, showing the 

trade-off between precision and recall for 

different thresholds. 
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Fig 11: PR Curve. 

F1 Curve: Figure 12 shows the F1 curve, 

highlighting the harmonic mean of precision 

and recall across different thresholds. 

 

Fig 12: F1 Curve. 

Training Results: Figure 13 provides an 

overview of the training results, including loss 

and accuracy metrics over epochs, 

demonstrating the model's learning progress 

and convergence. These figures together provide 

a comprehensive overview of the model's 

performance, both during training and on the 

evaluation sets, allowing for a thorough analysis 

of the YOLOv5s model's strengths and areas for 

potential improvement. 

 

Fig 13: Training Results. 

Training Data Samples: To provide an overview 

of the training data, we present a few samples 

from the training batches. 

  

Fig 13: Sample Images from Training Batches. 

Validation Data Labels and Predictions To 

evaluate the model's performance on the 

validation set, we compare the actual labels 

with the model's predictions. 

 

Fig 14: Actual Labels in Validation Batches. 

 

Fig 15: Model Predictions in Validation 

Batches. 

These figures provide a visual comparison of the 

ground truth and the predictions made by the 
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model, highlighting its performance and areas 

where it may need improvement. 

Validation Performance: During the validation 

phase, the model's performance was thoroughly 

assessed using various performance metrics 

and visualizations.  

Confusion Matrix: Figure 16 presents the 

confusion matrix generated during the 

validation phase. This matrix provides a 

detailed overview of the model's predictions 

compared to the actual labels in the validation 

dataset. It helps identify classes where the 

model may be struggling or making errors, 

thereby guiding further refinement efforts. 

 

Fig 16: Confusion Matrix. 

Precision-Recall Curve: Figure 17 illustrates 

the precision-recall (PR) curve computed during 

the validation process. This curve showcases 

the trade-off between precision and recall at 

different decision thresholds. It offers insights 

into how effectively the model balances 

precision and recall for object detection tasks on 

the validation dataset. 

Fig 17: Precision-Recall Curve. 

F1 Curve: Figure 18 displays the F1 curve 

calculated during the validation phase. The F1 

curve depicts the harmonic mean of precision 

and recall across various decision thresholds. 

Analyzing this curve helps gauge the model's 

overall performance and convergence during 

validation. 

 

Fig 18: F1 Curve. 

Precision Curve: Figure 19 represents the 

precision curve obtained from the validation 

phase. This curve plots precision against 

different decision thresholds and provides a 

closer look at the model's precision performance 

on the validation dataset. 
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Fig 19: Precision Curve. 

Recall Curve: Figure 20 showcases the recall 

curve derived from the validation phase. By 

plotting recall against different decision 

thresholds, this curve offers insights into the 

model's ability to correctly identify objects of 

interest across various recall levels during 

validation. 

Fig 20: Recall Curve. 

These visualizations collectively offer a 

comprehensive understanding of the YOLOv5s 

model's performance during the validation 

phase, facilitating an in-depth analysis of its 

strengths and areas for potential enhancement. 

Results Analysis: 

Overall Precision and Recall: We observed 

that both precision and recall in both training 

and validation results range around values of 

0.89 and 0.8, respectively. This indicates that 

the model can effectively identify objects with 

moderate efficiency, but there are some gaps 

that can be improved. 

Mean Average Precision (mAP): The values of 

mAP50 and mAP50-95 show that the model 

exhibits good performance in recognizing 

objects at 50% and 95% IoU (Intersection over 

Union). However, there seems to be a slight 

decline in validation performance compared to 

training. 

Individual Class Analysis: The performance of 

individual classes ranges from good to excellent, 

with some classes like "traffic_sign_30" and 

"traffic_light_green" showing excellent 

performance in both training and validation 

results. However, there are some classes that 

appear to perform less well in validation 

compared to training, such as "bike" and 

"person". 

Speed Analysis: The model appears to respond 

well with acceptable processing speed, ranging 

between 0.4 milliseconds for preprocessing and 

10.5 milliseconds for inference. 

Overall, the model demonstrates good 

performance on both datasets, but there are 

some gaps that can be improved, especially in 

certain classes like "bike" and "person". 

Performance can be enhanced by addressing 

some issues such as data imbalance and 

improving training settings. 

 

Conclusion and Recommendations 

In the realm of autonomous driving, accurate 

object detection is paramount for ensuring the 

safety and efficiency of vehicles. The YOLOv5 

model exhibits commendable performance in 

identifying objects, laying a solid foundation for 

its integration into autonomous vehicle 

systems. However, to fully realize its potential, 

several key areas warrant attention. 

1. Enhanced Safety: A robust object detection 

system is crucial for the safety of autonomous 

vehicles, as it enables them to perceive and 

react to their surroundings accurately. 

Addressing data imbalances and fine-tuning 

training settings can bolster the model's ability 
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to detect objects across diverse scenarios, 

mitigating risks on the road. 

2. Efficient Navigation: Accurate object 

detection not only enhances safety but also 

facilitates smoother navigation. By refining 

class-specific performance and optimizing 

model complexity, the YOLOv5 model can better 

discern complex traffic scenarios, improving the 

vehicle's decision-making capabilities and 

ensuring seamless interactions with its 

environment. 

3. Real-world Deployment: As autonomous 

driving technologies inch closer to widespread 

adoption, the deployment of reliable object 

detection systems becomes increasingly critical. 

Therefore, it's imperative to assess the model's 

performance in real-world scenarios, 

addressing deployment challenges and refining 

its effectiveness in practical applications. 

In summary, the significance of precise object 

detection in autonomous vehicles cannot be 

overstated. By heeding these recommendations 

and continuously refining the YOLOv5 model, 

we pave the way for safer, more efficient 

autonomous driving experiences, bringing us 

closer to a future where road travel is not only 

autonomous but also remarkably secure and 

reliable. 

Arabic section: 

 يادةالق ذاتية المركبات في الاصطناعي الذكاء باستخدام الأشياء اكتشاف

عويدات نجيب بدر  

 الدراجات مثل الأجسام، عن الكشف على الورقة هذه تركز :الملخص

 المرور وعلامات المرور واشارات والأشخاص النارية والدراجات الهوائية

 يعتمد حالياً، .CARLA بيئة في الذاتية القيادة نظام إطار ضمن والمركبات

 اتيةذ مركبات على أساسي بشكل الذاتية القيادة في الأجسام عن الكشف

 التنفيذ باتوصعو العالية التكاليف مثل تحديات تواجه التي ،الحقيقية القيادة

 التجارب من المصدر مفتوح وهو CARLA نظام مكني. الفعلي الوقت في

 نموذج خداماست تم البحثية، الورقة هذه في. التكلفة حيث من والفعاّلة الدقيقة

 بيانات مجموعات في جيدة نتائج اعطى وقد ،YOLOv5 العميق التعلم

 0651 تبلغ الصور من متنوعة مجموعة استخدام تم. والتحقق التدريب

 للتدريب، صورة 0011 إلى تقسيمها تم التدريب، عملية في صورة

 التدريب نتائج أظهرت. للتحقق صورة 011و للاختبار، صورة 051و

 mAP@50و ،1.010 بنسبة (R) واستدعاء ،1.0.0 بنسبة (P) دقة

 التحقق، نتائج في. 1.600 بنسبة  mAP@50-95و ،11..1 بنسبة

 و ،1.010 هو (R) والاستدعاء ،1.0.0 هي (P) الدقة كانت

mAP@50 و ،1.001 كانت mAP@50-95 1.6.1 كانت .

 جاعهاواستر بدقة الأجسام كشف على قادر النموذج أن إلى النتائج هذه تشير

 .بفعالية

كشف الكائنات، الذكاء الاصطناعي، المركبات الذاتية  :المفتاحيةالكلمات 

 .القيادة، كارلا، متوسط الدقة المتوسطة، إشارات المرور، علامات المرور

Abbreviations and Acronyms 

CARLA: Car Learning to Act, LiDAR: Light 

Detection and Ranging, MASTIF: MArine 

STation Imaging Facility, R-CNN: Region-based 

Convolutional Neural Network, QCNNs: 

Quaternion Convolutional Neural Networks, 

SVM: Support Vector Machine, mAP: mean 

Average Precision, FPS: Frames Per Second, 

YOLOv5: You Only Look Once, VGG16: Visual 

Geometry Group, CSPNet: Cross Stage Partial 

Network, P: Precision, R: Recall, mAP50: mean 

Average Precision: IoU: Intersection over Union,  
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