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2.1 
 . لٍبٍب، حْكسة،بٌغبشي جبهعت ،العلْم الاًسبًٍت ّالخطبٍقٍت ، كلٍتقسن حقٌٍت الوعلْهبث

3
 .ويٍ، الحعص، حعص ، جبهعتالعلْم ، كلٍتعلْم حبسْة قسن 

 0702-07-01تاريخ النشر:           0702-70-02تاريخ القبول:       0702-70-10تاريخ الاستلام: 

 :الولخص

ٌعُد سسطبى الجلد هي الأهساض الشابععت الخاً قاد حِادح ال،ٍابة، الأهاس الاري ٌجعا  ال،بجات هل،ات لْجاْح طاس  

الااخعلن العوٍااع لوعبلجاات الخ،اادي الوخو اا  لااً حقٍقاات للفشاام الوبفااس عٌااَ. لااً ُاارٍ الدزاساات، حاان حْ ٍاام حقٌٍاابث 

حصٌٍم اَلبث الجلدٌت إلى لئخٍي: حوٍدة أّ خبٍ ت. ٌّقخسح الب،ث إطبزاً هخفبهلاً ٌجوع باٍي ح،ٌْا  الوٌْجابث 

لخقلٍاا   (PCA) لاسااخاساا الاصاابعم الوفبًٍاات ّالخسححٌاات، ّح،لٍاا  الوفًْاابث السعٍسااٍت (DWT) الوخقطااع

لأغااساض  LSTM الودعْهاات بطبقاابث (RNN) العصاابٍت العوٍقاات الوخفااسزة الأبعاابح، إفاابلت إلااى الشاابفبث

لاسخاساا السوبث الوٌافضت الخسحح الأك س  DWT حخن هعبلجت صْز اَلبث الجلدٌت عبس ح،لٍلِب بـ .الخصٌٍم

ز ُرٍ الساوبث إلاى ًواْذا PCA حوٍصاً، ثن حطبٍع  للخالم هي الخفساز ّح،سٍي كفبءة الوعبلجت. بعد ذلك حوُسَّ

RNN قبحز على حو ٍ  العلاقبث الوعقدة حاخ  البٍبًبث. 

 F1-score% ّقٍوات 33.99أ ِسث الٌخبعج قدزة قٌْت على الخعوٍن، حٍث حقع الٌوْذا حقت هخْساطت بلغاج 

ساابُن لااً بٌاابء ًخاابم حشاٍصااً  DWT  ّPCA  ّRNNعبااس جوٍااع الطٍاابث. إى الخفبهاا  بااٍي  0.9803 =

فبًبحَ الْاعادة لاً الخطبٍقابث العولٍات بوجابي ح،لٍا  الصاْز الطبٍات ّالفشام عبلً الففبءة ّالدقت، هوب ٌبسش إه

 الوبفس عي سسطبى الجلد.
 

 .الشبفبث العصبٍت الوخفسزة ،ح،لٍ  الوفًْبث الأسبسٍت ،ح،ٌْ  الوْجبث الوٌفصلت ة:الكلوات الذال

Abstract 

Skin cancer is a common and potentially fatal disease, necessitating accurate and early 

detection methods. This study leverages the power of deep learning to address the challenge 

of classifying skin lesions into benign or malignant categories. An integrated framework is 

proposed, combining Discrete Wavelet Transform (DWT) for spatial and frequency-based 
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feature extraction, Principal Component Analysis (PCA) for dimensionality reduction, and 

Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) layers for 

classification. The system processes lesion images by decomposing them using DWT to 

extract salient low-frequency features, followed by PCA to eliminate redundancy and enhance 

computational efficiency. These refined features are then analyzed through an RNN 

architecture capable of modeling complex dependencies within the data. 

The results demonstrate strong generalization performance, with the model achieving an 

average accuracy of 96.33% and an F1-score of 0.9803 across folds. The synergy between 

DWT, PCA, and RNN contributes to a highly efficient and accurate diagnostic system, 

underscoring its potential for real-world applications in medical image analysis and early 

detection of skin cancer. 

 

Keywords: Discrete Wavelet Transform; Principal Component Analysis; Recurrent Neural 

Networks. 

1. Introduction  

Skin cancer is one of the most common types of cancer worldwide, starting in the skin cells. 

It is a widespread malignant tumor and often appears on sun-exposed skin. The three main types 

of skin cancer include melanoma, squamous cell carcinoma, and basal cell carcinoma. The cancer 

is characterized by the ability of its cells to grow abnormally, leading to the formation of tumors 

that can spread quickly if not detected in their early stages. The most prominent signs of skin 

cancer are abnormal changes in the appearance of the skin, such as the appearance of new moles 

or changes in existing moles, which are often warning signs of the presence of skin cancer. Early 

detection of this type of cancer is crucial to improving survival rates and reducing the risk of 

progression to later stages. However, doctors face significant challenges in identifying skin 

tumors in their early stages due to the inconspicuous nature of symptoms at these stages. 

Therefore, Artificial intelligence (AI) has emerged as a powerful tool to accelerate and enhance 

diagnostic accuracy. AI systems can analyze medical images of skin lesions and detect subtle 

patterns and indicators often missed by the human eye.  

These systems process vast amounts of medical data, uncovering complex relationships that 

traditional methods might overlook. Early detection of skin cancer can result in improved 

treatment outcomes and more effective therapies. In general, AI is driving major advances in skin 

cancer detection and treatment [1] [2]. 

Esteva et al. (2017) conducted groundbreaking research by using CNN-based model for skin 

cancer detection, which analyzed photos of skin lesions. The model, trained on a dataset of over 

129,000 skin images, achieved an accuracy rate of 85% [3]. Ichim et al. (2020) developed a skin 

lesion detection system using deep learning techniques, particularly CNN models such as 

GoogleNet, ResNet-101, and NasNet-Large, combined with an SVM based classification method. 

The system achieved an overall classification accuracy of 93%, effectively distinguishing 

between benign tumors and melanoma [4]. Won et al. (2021) developed a computer-aided 

diagnostic system that integrates a CNN-based classification model with a U-Net segmentation 

model to differentiate malignant melanoma from benign skin tumors using RGB skin images. 

This approach achieved an accuracy of 80.06% for melanoma classification and an 81.1% Dice 

similarity coefficient for lesion segmentation [5]. Additionally, in 2021, Jain et al. utilized the 

HAM10000 dataset to classify multi-class skin cancer using six transfer learning networks. The 

Xception network outperformed the others, achieving a classification accuracy of 90.48% [6]. 

Hussain et al. (2022) introduced a CNN model based on Inception-v3, achieving an 88% success 

rate in melanoma detection. Their study emphasized the importance of preprocessing and noise 

reduction to enhance image quality, which significantly aided the model in extracting 
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discriminative features [7]. Hussain et al. SkinLesNet, a deep model based on CNN designed to 

classify seborrheic keratosis, nevi, and melanoma using high-resolution data from various 

datasets such as PAD-UFES-20, HAM10000, and ISIC2017 [8].  

In 2023, Bhatti et al. achieved an 88% accuracy rate in skin cancer categorization using deep 

neural networks (DNNs). Their research demonstrated the efficiency of DNNs in processing 

complex medical imaging data by testing the models on large datasets of skin cancer [9]. 

Additionally, Ansari et al. (2023) developed a skin cancer detection model using DNNs based on 

ResNet and Inception architectures. This model achieved an accuracy of 94.6%, comparable to 

the diagnostic performance of professional dermatologists, highlighting its potential to enhance 

early detection of melanoma and other skin cancers [10]. In 2023 Jitendra V. Tambourine et al. 

conducted a study aiming to enhance skin cancer detection, particularly melanoma, by integrating 

machine learning and deep learning techniques. The proposed model utilized deep neural 

networks to extract automatic features from images, alongside handcrafted features derived using 

methods such as Contourlet Transform and Local Binary Pattern Histogram. The results showed 

that the model achieved a classification accuracy of 93%, outperforming traditional methods and 

expert dermatologists [11]. Another research 2024, Claret et al. further refined this approach by 

combining CNN and DWT achieving the same classification accuracy of 94%. This method 

surpassed conventional techniques, solidifying its potential for early detection of melanoma [12]. 

Recurrent Neural Network (RNN) is a deep learning technique, which has been widely used 

in medical applications such as cancer detection. Aziz et al. (2018) evaluated Temporal Enhanced 

Ultrasound (TeUS) data for prostate cancer diagnosis in 2018 using RNN, more especially Long 

Short-Term Memory (LSTM) networks. The study achieved a high accuracy of 93% and 

comprised data from 255 biopsy samples and 157 individuals. Comparing temporal modeling 

using RNN to conventional techniques, the study showed that the former greatly increases the 

accuracy of early prostate cancer diagnosis [13]. Ganguly et al. (2023) devised a Generative 

RNNs (GRNNs) framework that develops accurate and meaningful synthetic data of patients with 

metastatic cancer after surgery. The goal of this framework is to address the challenges of data 

sharing by generating synthetic datasets that preserve the statistical properties of the original data 

while ensuring patient anonymity. The model was used on167,474 patients and it achieved 93.2% 

accuracy at a loss of 0.21% [14]. Zareen et al. (2024). Achieved 94.48% accuracy rate in skin 

cancer classification using a hybrid deep learning model combining Convolutional Neural 

Networks (CNNs) and (RNNs). Their research demonstrated the efficiency of utilizing ResNet-

50 architecture for spatial feature extraction and STM layer for temporal analysis, tested on the 

ISIC dataset to classify nine types of skin cancer [15].  

Soglia (2025) developed an advanced AI model based on LC-OCT images to classify 

melanocytic skin lesions into three categories: benign nevi, atypical/dysplastic nevi, and 

melanoma. The study used retrospective analysis of vertical DICOM images enhanced with 

several filters to improve the signal-to-noise ratio. Pixel clustering techniques and biomarker 

extraction were applied using specialized software. Machine learning models including logistic 

regression, decision trees, and random forests were trained to differentiate melanoma from other 

nevi. While the models showed high accuracy on training data, they exhibited over fitting, 

resulting in a decreased accuracy of approximately 70–75% on independent test data. This study 

was the first to demonstrate the feasibility of in-vivo melanoma classification using LC-OCT 

combined with AI [26]. 

Hosseinzadeh et al. (2025) proposed a novel skin cancer diagnosis model combining deep 

learning and ensemble learning methods, published in PLOS ONE. The model integrated outputs 

from multiple deep learning models trained on skin lesion datasets, improving classification 

accuracy between benign and malignant lesions. The ensemble model outperformed individual 
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models, achieving an accuracy close to 94%, while also enhancing performance stability and 

reducing error rates across datasets. This work supports the potential of advanced AI techniques 

to improve early detection of skin cancer, aiding clinicians in making reliable, data-driven 

treatment decisions [27]. 

The remainder of this paper is structured as follows. Section two reviews the theoretical 

background, including foundational concepts of RNNs, DWT, and PCA. Section three outlines 

the proposed methodology, detailing the preprocessing pipeline, dataset description, feature 

extraction process, and the architecture of the RNN-based classification model. Section four 

presents the experimental results, performance evaluation metrics, and a comparative analysis 

with existing state-of-the-art methods. Finally, Section five provides concluding remarks and 

outlines future directions for research. 

2. Background Review 

2.1 Recurrent Neural Networks (RNNs) 

Text, audio signals, and time series are examples of sequential data that can be handled by 

RNNs, a form of artificial neural networks. Their ability to memorize information from earlier 

phases in the sequence and utilize it to process or produce outputs in later steps is the 

fundamental concept underlying these networks. They are therefore ideal for activities requiring a 

grasp of context or reliance on data order [16]. 

The dependence relationships between data points are what RNNs rely on, as opposed to standard 

neural networks, which assume that all inputs are independent of one another. This is achieved by 

using a hidden state that retains information from the previous time step and combines it with the 

input at the current step to produce the output. The process of updating the hidden state can be 

expressed mathematically below. 

    (             )        (1) 

Where:   : is the activation function, which can be a nonlinear function. 

  : is the hidden state at time step    
      is the hidden state from the previous time step      
  : is the input at time step    
  : is the weight matrix for the hidden state from the previous time step. 

  : is the weight matrix for the current input    . 

 : is the bias term. 

However, there are several difficulties in training RNNs, particularly the exploding gradient and 

vanishing gradient issues. The back propagation algorithm is used to calculate updates during 

training, which causes these issues and hinders the network's ability to learn long-term temporal 

patterns. RNNs have evolved into more advanced architectures such as the Gated Recurrent Unit 

(GRU) and Long Short-Term Memory (LSTM), to address these issues. These architectures 

incorporate techniques to manage the flow of information over time, making them more effective 

at managing sequential data.  

 

2.1.1 Long Short-Term Memory (LSTM) 
The vanishing gradient issue is addressed by Long Short-Term Memory (LSTM), which 

introduces memory cells and controls the information flow. It’s consists of three gates as follow:   

1. Input Gate: The amount of fresh data that is added to the memory cell is controlled by this 

gate.   

2. Forget Gate: Manages the data that is erased from the memory cell.   
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3. Output Gate: For the current time step, the output gate regulates the amount of data that is 

taken out of the memory cell.  

LSTM networks are effective at modeling long-term temporal dependencies, making them 

particularly suitable for applications such as machine translation and other tasks that require 

maintaining contextual information over extended sequences. LSTMs are computationally 

intensive and difficult to parallelize, making them slow to train and inefficient for long sequences 

due to the quantity of gates.  

The architecture of the RNN used in this system consists of the following components: 

• LSTM Layers: Long Short-Term Memory units are utilized to enhance feature 

processing by addressing the vanishing gradient issue and capturing patterns in the data. 

[20] 

• Dropout Layers: Regularization is applied to improve generalization and avoid 

overfitting. [21] 

• Batch Normalization: This stabilizes and accelerates training by normalizing activations. 

[22] 

2.2  Discrete Wavelet Transform (DWT) 

DWT is a potent tool for multi-resolution analysis that simultaneously captures frequency and 

spatial information. To enable multi-resolution analysis, this transformation depends on splitting 

the image into four sub-bands. LL sub-band represents the image's low-frequency components 

while maintaining its main characteristics and general structure.  HL, LH and HH sub-bands 

capture high-frequency details in the following directions respectively: horizontal, vertical, and 

diagonal. The mathematical representation of the DWT is given as: 

 

  [ ]      
    [ ]       ( )    (2) 

Where:  

  [ ]: represent the DWT coefficients at level   and scale  . 

 [ ]: is the original signal. 

      :is the wavelet function at level   and position  , which is derived from scaling and 

shifting operations on the base wavelet function. 

 : is the number of samples in the original signal. 

One of DWT key strengths is its ability to perform multi-resolution analysis, allowing for in-

depth examination of signals while preserving critical information. Additionally, DWT is highly 

effective in data compression applications, significantly reducing data size without substantial 

loss of quality. However, DWT also presents certain limitations. It is sensitive to boundary 

conditions, which may result in distortions at the signal edges. Moreover, DWT can be 

computationally more intensive than alternative techniques such as the Fourier Transform, 

requiring greater processing power. Despite these challenges, DWT remains a powerful and 

widely adopted tool across scientific, engineering, and medical domains. 

2.3 Principal Component Analysis (PCA) 

One statistical technique for lowering the dimensionality of data while maintaining the greatest 

amount of variability is PCA  to do this, the original data is converted into a new coordinate 

system with uncorrelated axes (called primary components) arranged according to how much 

variance they can capture. The mathematical representation of PCA is described as: 
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                                                               (3) 

Where: 

 : The transformed data (principal components). 

  ′: The mean-centered data matrix. 

  : The matrix of the first   eigenvectors (principal components) [29]. 

The core steps in PCA include: 

1. Mean Centering: To achieve zero mean for all features, subtract the feature means from 

the data:  

 

            
                                          (4) 

Where:         is the original value, and    is the mean of feature  . 

2. Covariance Matrix Calculation: Compute the covariance matrix to understand the 

relationships between features: 

              
 

   
                              (5) 

Where   is the covariance matrix, and   is the number of samples. 

 

3. Eigen Decomposition: Determine the covariance matrix's eigenvalues and eigenvectors:     

 

                                (6) 

            Where:   λ: The eigenvalues represent the variance explained by each principal 

component. 

                     : The eigenvectors define the directions of the principal components. 

4. Dimensionality Reduction: To project the data into a lower-dimensional space, choose the 

top   eigenvectors that match the biggest eigenvalues. 

PCA is especially useful in situations where high-dimensional data presents difficulties, such 

over fitting or computing inefficiency. 

3. Skin Cancer Detection system 

The design of the image recognition system generally involves the collection data, feature 

extraction/selection, model selection or training, and evaluation. This part describes the design of 

the detection system for skin cancer detection of digital images. The design process is divided 

into two main phases: the training phase and the testing phase. 

 Training Phase: At the beginning of the training phase, a collection of digital images is 

used as training data. The data is then prepared by using the pre-processing phase. The 

image characteristics may then be extracted using a few features extraction techniques. 

The retrieved features can then be used to learn a selected model. The categorization 

model, which takes into account the phase's main goal, is the end product of this phase. 

 Testing Phase: During this phase, the system's capacity to approximate system 

generalization and classify patterns into appropriate groups is tested using the new data. 

3.1 Data Collection 

The comprehensive ISIC dataset, available on the Kaggle platform, is utilized. This dataset 

contains high-quality medical images of various skin lesions, providing balanced representation 

across different classes. The ISIC dataset is a reliable and widely used resource in the field of 

skin cancer diagnosis using artificial intelligence. The final dataset used in this research consists 

of 120 images of benign lesions (non-threatening cases) and 1517 images of malignant lesions 
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(cases require urgent medical intervention). A larger number of malignant images were chosen to 

provide broader representation for this class during training, which helps improve the model's 

performance and accuracy in identifying malignant lesions. Figure 1 shows examples of benign 

and malignant lesions. 

 

3.2 Pre-processing  

The proposed system enhances input images for skin cancer detection and classification 

through a series of pre-processing steps. For consistent feature extraction, all images in this work 

are resized to 140 × 140 pixels to ensure uniformity in dimensions. To further standardize the 

input data and improve the model stability during training, the pixel values are normalized to a 

range between 0 and 1, where 0 represents black and 1 represents white. As color information 

may contribute to more accurate classification, the system retains the original color channels 

rather than converting the images to grayscale. 

3.3 Features Extraction  

Feature extraction is a crucial stage in the proposed skin cancer classification system. Its 

primary goal is to transform raw image data into meaningful and discriminative features for 

effective classification. The system utilizes a combination of DWT and PCA for both feature 

extraction and dimensionality reduction. The resulting features are then fed into RNN to enhance 

classification performance. DWT breaks the images down into four sub-bands (LL, LH, HL, 

HH). Only the LL sub-band is used in the proposed system as it eliminates high-frequency noise 

while preserving the most important characteristics. This effective representation lowers the 

computational complexity without losing the feature set's correctness. To further optimize the 

features extracted from the LL sub-band, PCA is applied. This technique reduces dimensionality 

by identifying and retaining the most significant components of the feature set, thereby ensuring 

an efficient representation while minimizing redundancy. The number of principal components is 

set to 100, striking a balance between classification accuracy and computational efficiency. 

3.4 RNN Model for classification  

This study addresses the classification of skin lesions as a two-class problem: benign and 

malignant. The problem is tackled using a deep learning approach with RNN-based architecture, 

leveraging LSTM layers for enhanced feature processing.  RNN processes the reduced feature set 

for further classification and analysis. RNN are typically used for sequential data and captures 

complex dependencies within the feature set. Therefore, the system reshapes the extracted feature 

vectors into a two-dimensional sequential format to leverage the powerful processing capabilities 

Figure 1: Sample images from the dataset, (a) benign      (b) Malignant. 
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of RNNs, thereby enhancing the system’s ability to differentiate between benign and malignant 

lesions. The architecture of RNN in this study consists of a sequence of LSTM layers with 

dropout and batch normalization applied after each layer. The model learns hierarchical patterns 

in the data by capturing spatial features through the LSTM layers.   

Input: the input feature vectors, obtained from DWT and subsequently reduced in dimensionality 

using PCA, are reshaped into a two-dimensional sequential format suitable for processing by the 

LSTM layers. 

LSTM Layers: 

The core of the architecture comprises four LSTM layers: 

 First LSTM Layer: Contains 128 units and outputs sequences for the subsequent layer. 

Dropout is set at 25%, and batch normalization is applied to stabilize activations. 

 Second LSTM Layer: Composed of 64 units, this layer also outputs sequences. Dropout is set 

at 20%, and batch normalization is included. 

 Third LSTM Layer: This layer has 32 units and outputs sequences to maintain temporal 

dependencies. A dropout rate of 20% is applied along with batch normalization. 

 Final LSTM Layer: Includes 32 units and outputs a feature vector used for classification. 

Dropout is set to 25% to ensure effective regularization. 

Output: is the binary classification via a sigmoid-activated neuron. 

In this classification setup, the model is trained on labeled data (     ), where       represents 

the input features vector (image data), and    is the binary label (0 for benign and 1 for 

malignant). The RNN model learns to optimize the binary cross-entropy loss function to classify 

the images accurately. The model is optimized using the Adam optimizer with binary cross-

entropy loss to handle the binary classification problem. The training process is enhanced by call 

backs such as Early Stopping and ReduceLROnPlateau, ensuring efficient learning and avoiding 

over fitting. This approach offers a robust solution to the problem of skin cancer classification by 

combining the power of deep learning with specialized image pre-processing techniques, such as 

DWT and PCA, making it suitable for real-time medical applications. Figure 2 illustrates the 

block diagram of the proposed model for skin cancer detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Illustrates how the model works. 
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4. Experimental Results 
 This study uses ISIC dataset [25] to evaluate the proposed model for skin cancer detection. All images are 

resized to 140 × 140 pixels to ensure uniformity in dimensions. Additionally, the pixel values are 

normalized to a range between 0 and 1, where 0 represents black and 1 represents white. 
The performance of the proposed model is valuated in terms of accuracy, which is defined as the 

ratio of correctly classified samples to the total samples. Accuracy is calculated using the 

following formula: 

Accuracy = 
(     )

 
                                            (7) 

                                                (8) 

 

Where:  TP is the number of true positives, TN is the number of true negatives, FP is the number 

of false positives, FN is the number of false negatives, and N is the total number of 

samples. 

Additionally, F1-score is utilized as metric in classification problem to measure the model’s 

accuracy. This metric can be calculated as: 

         
(                )

(                )
                        ( ) 

                
  

(     )
    ,           

  

(     )
   . 

Where the used metrics (accuracy and F1-score) give a value between 0 and 1 where 1 is the 

optimal value.  

The proposed model utilizes the RNN architecture with features that are extracted from LL 

sub-bands using DWT incorporating LSTM layers as a core component of RNN. The initial 

version of the model is evaluated using ISIC dataset which included two classes: 

 Benign: 30 images. 

 Malignant: 240 images. 

This version shows promising results, achieving an accuracy of 92% in classifying skin cancer 

images. 

To achieve better model performance, PCA is used to reduce the dimensionality of extracted 

features from LL sub-bands. PCA focuses on significant components, minimizing noise, and 

improving overall computational efficiency. Furthermore, a larger and more diverse dataset was 

utilized, comprising: 

 Benign: 120 images.  

 Malignant: 1517 images. 

With these improvements, the model achieved a significantly higher accuracy of 98%, 

underscoring the effectiveness of combining advanced pre-processing techniques (DWT and 

PCA) with the RNN architecture. The unified model shows strong capability in differentiating 

benign from malignant skin lesions, underscoring the promise of deep learning in medical image 

classification. 

Table 1: The performance of proposed Model 

Feature extraction ISIC Dataset Accuracy 

(%) 

F1-score 

DWT 270 images (30 Benign and 240 Malignant) 94% 0.95 

DWT+PCA 
1637 images (120 Benign and 1517 

Malignant) 
98% 0.99 
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Figure 3 illustrates the accuracy progression of DWT with the RNN architecture during 

training and validation across different epochs, providing a clear view of the model's 

performance. The figure also shows the loss trends (measure of the model's error) highlighting 

the decrease in both training and validation loss over time. Additionally, Figure 4 illustrates the 

accuracy progression of DWT and PCA with the RNN architecture during training and validation 

across different epochs, providing a clear view of the model's performance. The figure also shows 

the loss trends (measure of the model's error) highlighting the decrease in both training and 

validation loss over time.  

 
Figure 3: shows the accuracy and loss trends of the proposed model (DWT  (  

 
Figure 4: shows the accuracy and loss trends of the proposed model (DWT+PCA). 

 

4.1 Cross-Validation (5-Fold Cross-Validation) 

To ensure accurate and comprehensive evaluation of the proposed model, a 5-Fold Cross-

Validation strategy was employed. This technique is widely adopted in machine learning research 
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as it mitigates the risk of bias associated with static data splits and provides a realistic assessment 

of the model’s generalization ability. 

In this study, the whole dataset was randomly divided into five equal subsets (folds). For each 

iteration, four folds were used to train the model while the remaining fold served as the test set. 

This process was repeated five times, with each fold acting as the test set exactly once. Upon 

completion, the mean and standard deviation of the performance metrics were calculated across 

the five runs, offering a more stable and reliable estimate of model performance. The results 

obtained from this validation process are summarized at Table 2. 

  Table 2:  shows the summary of Cross-Validation Results 

Metric Mean ± Standard Deviation 

Loss 0.1120 ± 0.0273 

Accuracy 96.33% ± 1.08% 

F1-Score 0.9803 ± 0.0057 

AUC 0.9538 ± 0.0320 

False Positives (FP) 7.40 ± 3.26 

False Negatives (FN) 4.60 ± 1.02 

 

These results demonstrate a high degree of consistency in performance across folds, indicating 

the model’s strong generalization capability and its robustness to variations in data splits. The 

high average accuracy is 96.33% and F1-score is 0.9803 that suggest a well-balanced trade-off 

between precision and recall. Moreover, the low rates of false positives and false negatives 

confirm the model’s effectiveness in minimizing classification errors, which is especially crucial 

in medical applications like skin cancer detection. 

Overall, this cross-validation strategy validates the effectiveness of combining DWT, PCA, 

and RNN architectures for the reliable and efficient classification of skin lesions, reinforcing the 

model's potential for real-world clinical deployment. 

Figure 5 illustrates the training and validation performance of the proposed method using the 

RNN model. The left plot shows the accuracy progression across epochs, where the validation 

accuracy reaches a maximum of 96.33%. The right plot presents the loss trends, indicating a 

steady decrease in both training and validation loss over time, reflecting the model’s ability to 

generalize effectively despite some fluctuations in validation loss. Figure 6 illustrates Final 

summary of performance metrics obtained from 5-Fold Cross-Validation. The bar chart displays 

the averaged values of AUC, F1-score, accuracy, and loss, as well as the average false positives 

(FP) and false negatives (FN). Figure 7 reflects the model’s high classification accuracy and low 

error rates, confirming its robustness and suitability for reliable skin cancer detection. . Table 3 

shows a comparison between the proposed approach and previous work in [12, 15].   
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Figure 5. Accuracy and loss across 5-folds. 

 

 
Figure 6. Final summary of performance 

 

Figure 7. ROC curves for 5-Fold Cross-Validation. 

 

Table 3 shows a comparison between the proposed model and the models in [12, 15] 

Feature extraction Model Accuracy 

DWT+PCA 

proposed method 
RNN 98% 

DWT+PCA+ 

5-Fold Cross-Validation 
RNN 96.33% 

CNN in [15] RNN 94.48% 

DWT in [12] CNN 94% 
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5. Conclusion and Future Work 

This paper presented a deep learning framework for skin lesion classification, employing an 

RNN with LSTM layers. Features were extracted from the LL sub-bands of the DWT, followed 

by dimensionality reduction using PCA to retain the most informative features while enhancing 

computational efficiency. The proposed approach achieved a high classification accuracy of 98%. 

Furthermore, a 5-fold cross-validation was conducted, resulting in an average accuracy of 

96.33%, confirming the robustness and generalizability of the model across different subsets of 

the dataset. 

Future research will focus on expanding the dataset in both size and diversity to further 

improve model generalization. Additionally, integrating explainable AI techniques could provide 

clinicians with interpretable insights, supporting practical adoption in dermatological diagnostics. 
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