Tl s Loy o sall 3y s el Ll
Bani Waleed University Journal of Humanities and
Applied Sciences
Ll — g b daala (8 auad

Website:https://[has-bwu.com/index.php/bwjhas/index

ISSN3005-3900 (33-20) waiall 2025 — &I 2l — pdilad) alaal)

A Deep Learning-Based Method for Skin Cancer Detection

Rabha O. AbdElsalam '* | Safa Abdelkarem Elgzali 2, Sahar Q. Saleh ®
12 Department of Computer Science, College of Humanities and Applied Sciences, University of Benghazi, Tokra, Libya.
3 Department of Computer Science, Taiz University, Taiz, Yemen.

rabha.omar@uob.edu.ly

Aal) ¢l jou 0 CRESH Graad) alail) e Aatint 48y 4

3 CJLA amlé P c2 Qf“ﬂ\ ﬁ)ﬁ\é& sl ¢ 1 eM\.\,@ IAS ;\A,ib
Ll B _S gics iy drala dipdail) 5 ApluV) o slal) 4408 (e sleall 45 0 12
ol ¢ ad ¢ Rl glall A (o puls o le i
2025-10-01 : &) oyl 2025-08-02 :Jsal) i 2025-07-10 :da) )i

:padldl

b asa ddale dalall Jaay 20 51 alall sagi a8 3l Ll ) e (e aladl (s o e
o Jiaial) sl Aallaad Gaenll alaill UL Cagla 65 a8 sl pall oda 8 e Sl CadSl G
Cilag sall J sa (s gang SalSiia T s} onll = i 5 A5l ol Spen 10y ) dpalal) Y G
R (PCA) Ll Sl Sl oty cdgan jill 5 4glall pailaadl) ) A5uY (DWT) ebitial
o=l >£Y LSTM liiday A se xall (RNN) 6_,-Siall 8 eall dppacmall IS0l ) 48] calay¥)
SSYI a0l Amddiall Cladl #1530 DWT - lediad e dalall Gl ) sea dadlee a3 oyl
Tl A landhoia 58 ellh aay Aallaall 30US Gauat s I S o palaill PCA Gk o ¢l
) Jal saieall M) Jiad e 38RNN

Fl-score dass%96.33 <l ddaw gia 483 73 saill (38n Cun caanill o 48 5 a8 gilisll &yl
(i alat oLy 8 28l RNN 5 PCA s DWT o JwlSll o) bl aaea e = (0.9803
Gl g dghall sl Qs Jlaa dolead) ciliyail) 6 sac] ol 450LSa) 3 Lae (80l 4 3 LaSH e
“ Al e s e Sl

5 Siall Fppael) ST cdanlad) U Kl Jalas ciliadiall Cila gall Jy gad sAdIAY cilalsl)

Abstract

Skin cancer is a common and potentially fatal disease, necessitating accurate and early
detection methods. This study leverages the power of deep learning to address the challenge
of classifying skin lesions into benign or malignant categories. An integrated framework is
proposed, combining Discrete Wavelet Transform (DWT) for spatial and frequency-based
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feature extraction, Principal Component Analysis (PCA) for dimensionality reduction, and
Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) layers for
classification. The system processes lesion images by decomposing them using DWT to
extract salient low-frequency features, followed by PCA to eliminate redundancy and enhance
computational efficiency. These refined features are then analyzed through an RNN
architecture capable of modeling complex dependencies within the data.

The results demonstrate strong generalization performance, with the model achieving an
average accuracy of 96.33% and an F1-score of 0.9803 across folds. The synergy between
DWT, PCA, and RNN contributes to a highly efficient and accurate diagnostic system,
underscoring its potential for real-world applications in medical image analysis and early
detection of skin cancer.

Keywords: Discrete Wavelet Transform; Principal Component Analysis; Recurrent Neural
Networks.

1. Introduction

Skin cancer is one of the most common types of cancer worldwide, starting in the skin cells.
It is a widespread malignant tumor and often appears on sun-exposed skin. The three main types
of skin cancer include melanoma, squamous cell carcinoma, and basal cell carcinoma. The cancer
is characterized by the ability of its cells to grow abnormally, leading to the formation of tumors
that can spread quickly if not detected in their early stages. The most prominent signs of skin
cancer are abnormal changes in the appearance of the skin, such as the appearance of new moles
or changes in existing moles, which are often warning signs of the presence of skin cancer. Early
detection of this type of cancer is crucial to improving survival rates and reducing the risk of
progression to later stages. However, doctors face significant challenges in identifying skin
tumors in their early stages due to the inconspicuous nature of symptoms at these stages.
Therefore, Artificial intelligence (Al) has emerged as a powerful tool to accelerate and enhance
diagnostic accuracy. Al systems can analyze medical images of skin lesions and detect subtle
patterns and indicators often missed by the human eye.

These systems process vast amounts of medical data, uncovering complex relationships that
traditional methods might overlook. Early detection of skin cancer can result in improved
treatment outcomes and more effective therapies. In general, Al is driving major advances in skin
cancer detection and treatment [1] [2].

Esteva et al. (2017) conducted groundbreaking research by using CNN-based model for skin
cancer detection, which analyzed photos of skin lesions. The model, trained on a dataset of over
129,000 skin images, achieved an accuracy rate of 85% [3]. Ichim et al. (2020) developed a skin
lesion detection system using deep learning techniques, particularly CNN models such as
GoogleNet, ResNet-101, and NasNet-Large, combined with an SVM based classification method.
The system achieved an overall classification accuracy of 93%, effectively distinguishing
between benign tumors and melanoma [4]. Won et al. (2021) developed a computer-aided
diagnostic system that integrates a CNN-based classification model with a U-Net segmentation
model to differentiate malignant melanoma from benign skin tumors using RGB skin images.
This approach achieved an accuracy of 80.06% for melanoma classification and an 81.1% Dice
similarity coefficient for lesion segmentation [5]. Additionally, in 2021, Jain et al. utilized the
HAM10000 dataset to classify multi-class skin cancer using six transfer learning networks. The
Xception network outperformed the others, achieving a classification accuracy of 90.48% [6].
Hussain et al. (2022) introduced a CNN model based on Inception-v3, achieving an 88% success
rate in melanoma detection. Their study emphasized the importance of preprocessing and noise
reduction to enhance image quality, which significantly aided the model in extracting

21



discriminative features [7]. Hussain et al. SkinLesNet, a deep model based on CNN designed to
classify seborrheic keratosis, nevi, and melanoma using high-resolution data from various
datasets such as PAD-UFES-20, HAM10000, and I1SIC2017 [8].

In 2023, Bhatti et al. achieved an 88% accuracy rate in skin cancer categorization using deep
neural networks (DNNSs). Their research demonstrated the efficiency of DNNs in processing
complex medical imaging data by testing the models on large datasets of skin cancer [9].
Additionally, Ansari et al. (2023) developed a skin cancer detection model using DNNs based on
ResNet and Inception architectures. This model achieved an accuracy of 94.6%, comparable to
the diagnostic performance of professional dermatologists, highlighting its potential to enhance
early detection of melanoma and other skin cancers [10]. In 2023 Jitendra V. Tambourine et al.
conducted a study aiming to enhance skin cancer detection, particularly melanoma, by integrating
machine learning and deep learning techniques. The proposed model utilized deep neural
networks to extract automatic features from images, alongside handcrafted features derived using
methods such as Contourlet Transform and Local Binary Pattern Histogram. The results showed
that the model achieved a classification accuracy of 93%, outperforming traditional methods and
expert dermatologists [11]. Another research 2024, Claret et al. further refined this approach by
combining CNN and DWT achieving the same classification accuracy of 94%. This method
surpassed conventional techniques, solidifying its potential for early detection of melanoma [12].

Recurrent Neural Network (RNN) is a deep learning technique, which has been widely used
in medical applications such as cancer detection. Aziz et al. (2018) evaluated Temporal Enhanced
Ultrasound (TeUS) data for prostate cancer diagnosis in 2018 using RNN, more especially Long
Short-Term Memory (LSTM) networks. The study achieved a high accuracy of 93% and
comprised data from 255 biopsy samples and 157 individuals. Comparing temporal modeling
using RNN to conventional techniques, the study showed that the former greatly increases the
accuracy of early prostate cancer diagnosis [13]. Ganguly et al. (2023) devised a Generative
RNNs (GRNNSs) framework that develops accurate and meaningful synthetic data of patients with
metastatic cancer after surgery. The goal of this framework is to address the challenges of data
sharing by generating synthetic datasets that preserve the statistical properties of the original data
while ensuring patient anonymity. The model was used on167,474 patients and it achieved 93.2%
accuracy at a loss of 0.21% [14]. Zareen et al. (2024). Achieved 94.48% accuracy rate in skin
cancer classification using a hybrid deep learning model combining Convolutional Neural
Networks (CNNs) and (RNNSs). Their research demonstrated the efficiency of utilizing ResNet-
50 architecture for spatial feature extraction and STM layer for temporal analysis, tested on the
ISIC dataset to classify nine types of skin cancer [15].

Soglia (2025) developed an advanced Al model based on LC-OCT images to classify
melanocytic skin lesions into three categories: benign nevi, atypical/dysplastic nevi, and
melanoma. The study used retrospective analysis of vertical DICOM images enhanced with
several filters to improve the signal-to-noise ratio. Pixel clustering techniques and biomarker
extraction were applied using specialized software. Machine learning models including logistic
regression, decision trees, and random forests were trained to differentiate melanoma from other
nevi. While the models showed high accuracy on training data, they exhibited over fitting,
resulting in a decreased accuracy of approximately 70-75% on independent test data. This study
was the first to demonstrate the feasibility of in-vivo melanoma classification using LC-OCT
combined with Al [26].

Hosseinzadeh et al. (2025) proposed a novel skin cancer diagnosis model combining deep
learning and ensemble learning methods, published in PLOS ONE. The model integrated outputs
from multiple deep learning models trained on skin lesion datasets, improving classification
accuracy between benign and malignant lesions. The ensemble model outperformed individual
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models, achieving an accuracy close to 94%, while also enhancing performance stability and
reducing error rates across datasets. This work supports the potential of advanced Al techniques
to improve early detection of skin cancer, aiding clinicians in making reliable, data-driven
treatment decisions [27].

The remainder of this paper is structured as follows. Section two reviews the theoretical
background, including foundational concepts of RNNs, DWT, and PCA. Section three outlines
the proposed methodology, detailing the preprocessing pipeline, dataset description, feature
extraction process, and the architecture of the RNN-based classification model. Section four
presents the experimental results, performance evaluation metrics, and a comparative analysis
with existing state-of-the-art methods. Finally, Section five provides concluding remarks and
outlines future directions for research.

2. Background Review
2.1 Recurrent Neural Networks (RNNs)

Text, audio signals, and time series are examples of sequential data that can be handled by

RNNs, a form of artificial neural networks. Their ability to memorize information from earlier
phases in the sequence and utilize it to process or produce outputs in later steps is the
fundamental concept underlying these networks. They are therefore ideal for activities requiring a
grasp of context or reliance on data order [16].
The dependence relationships between data points are what RNNs rely on, as opposed to standard
neural networks, which assume that all inputs are independent of one another. This is achieved by
using a hidden state that retains information from the previous time step and combines it with the
input at the current step to produce the output. The process of updating the hidden state can be
expressed mathematically below.

he = f(Wyhe_q + Wyxe + b) (1)

Where: f: is the activation function, which can be a nonlinear function.

h;: is the hidden state at time step t.

h_: is the hidden state from the previous time step t — 1.

x;: is the input at time step t.

Wy is the weight matrix for the hidden state from the previous time step.

W, is the weight matrix for the current input x,.

b: is the bias term.
However, there are several difficulties in training RNNSs, particularly the exploding gradient and
vanishing gradient issues. The back propagation algorithm is used to calculate updates during
training, which causes these issues and hinders the network's ability to learn long-term temporal
patterns. RNNSs have evolved into more advanced architectures such as the Gated Recurrent Unit
(GRU) and Long Short-Term Memory (LSTM), to address these issues. These architectures
incorporate techniques to manage the flow of information over time, making them more effective
at managing sequential data.

2.1.1 Long Short-Term Memory (LSTM)
The vanishing gradient issue is addressed by Long Short-Term Memory (LSTM), which
introduces memory cells and controls the information flow. It’s consists of three gates as follow:
1. Input Gate: The amount of fresh data that is added to the memory cell is controlled by this
gate.
2. Forget Gate: Manages the data that is erased from the memory cell.
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3. Output Gate: For the current time step, the output gate regulates the amount of data that is
taken out of the memory cell.
LSTM networks are effective at modeling long-term temporal dependencies, making them
particularly suitable for applications such as machine translation and other tasks that require
maintaining contextual information over extended sequences. LSTMs are computationally
intensive and difficult to parallelize, making them slow to train and inefficient for long sequences
due to the quantity of gates.

The architecture of the RNN used in this system consists of the following components:

« LSTM Layers: Long Short-Term Memory units are utilized to enhance feature
processing by addressing the vanishing gradient issue and capturing patterns in the data.
[20]

« Dropout Layers: Regularization is applied to improve generalization and avoid
overfitting. [21]

« Batch Normalization: This stabilizes and accelerates training by normalizing activations.
[22]

2.2 Discrete Wavelet Transform (DWT)

DWT is a potent tool for multi-resolution analysis that simultaneously captures frequency and
spatial information. To enable multi-resolution analysis, this transformation depends on splitting
the image into four sub-bands. LL sub-band represents the image's low-frequency components
while maintaining its main characteristics and general structure. HL, LH and HH sub-bands
capture high-frequency details in the following directions respectively: horizontal, vertical, and
diagonal. The mathematical representation of the DWT is given as:

xi[k] = Z5gx[nl. e () (2)
Where:
x;[k]: represent the DWT coefficients at level j and scale k.
x[n]: is the original signal.
Yj -is the wavelet function at level j and position k, which is derived from scaling and
shifting operations on the base wavelet function.
N is the number of samples in the original signal.

One of DWT key strengths is its ability to perform multi-resolution analysis, allowing for in-
depth examination of signals while preserving critical information. Additionally, DWT is highly
effective in data compression applications, significantly reducing data size without substantial
loss of quality. However, DWT also presents certain limitations. It is sensitive to boundary
conditions, which may result in distortions at the signal edges. Moreover, DWT can be
computationally more intensive than alternative techniques such as the Fourier Transform,
requiring greater processing power. Despite these challenges, DWT remains a powerful and
widely adopted tool across scientific, engineering, and medical domains.

2.3 Principal Component Analysis (PCA)

One statistical technique for lowering the dimensionality of data while maintaining the greatest
amount of variability is PCA to do this, the original data is converted into a new coordinate
system with uncorrelated axes (called primary components) arranged according to how much
variance they can capture. The mathematical representation of PCA is described as:
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Z=x"V 3
Where:
Z: The transformed data (principal components).
x " The mean-centered data matrix.
Vi.: The matrix of the first k eigenvectors (principal components) [29].
The core steps in PCA include:
1. Mean Centering: To achieve zero mean for all features, subtract the feature means from
the data:

Xij = Xij = Uj 4)
Where: x;; is the original value, and y; is the mean of feature ;.

2. Covariance Matrix Calculation: Compute the covariance matrix to understand the
relationships between features:

C=—XTX' (5)
Where C is the covariance matrix, and n is the number of samples.

3. Eigen Decomposition: Determine the covariance matrix's eigenvalues and eigenvectors:

Cv=21 (6)
Where: A: The eigenvalues represent the variance explained by each principal
component.

v: The eigenvectors define the directions of the principal components.
4. Dimensionality Reduction: To project the data into a lower-dimensional space, choose the
top k eigenvectors that match the biggest eigenvalues.
PCA is especially useful in situations where high-dimensional data presents difficulties, such
over fitting or computing inefficiency.

3. Skin Cancer Detection system

The design of the image recognition system generally involves the collection data, feature
extraction/selection, model selection or training, and evaluation. This part describes the design of
the detection system for skin cancer detection of digital images. The design process is divided
into two main phases: the training phase and the testing phase.

e Training Phase: At the beginning of the training phase, a collection of digital images is
used as training data. The data is then prepared by using the pre-processing phase. The
image characteristics may then be extracted using a few features extraction techniques.
The retrieved features can then be used to learn a selected model. The categorization
model, which takes into account the phase's main goal, is the end product of this phase.

e Testing Phase: During this phase, the system's capacity to approximate system
generalization and classify patterns into appropriate groups is tested using the new data.

3.1 Data Collection

The comprehensive ISIC dataset, available on the Kaggle platform, is utilized. This dataset
contains high-quality medical images of various skin lesions, providing balanced representation
across different classes. The ISIC dataset is a reliable and widely used resource in the field of
skin cancer diagnosis using artificial intelligence. The final dataset used in this research consists
of 120 images of benign lesions (non-threatening cases) and 1517 images of malignant lesions
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(cases require urgent medical intervention). A larger number of malignant images were chosen to
provide broader representation for this class during training, which helps improve the model's
performance and accuracy in identifying malignant lesions. Figure 1 shows examples of benign
and malignant lesions.

(a) (b)

Figure 1: Sample images from the dataset, (a) benign  (b) Malignant.

3.2 Pre-processing

The proposed system enhances input images for skin cancer detection and classification
through a series of pre-processing steps. For consistent feature extraction, all images in this work
are resized to 140 x 140 pixels to ensure uniformity in dimensions. To further standardize the
input data and improve the model stability during training, the pixel values are normalized to a
range between 0 and 1, where O represents black and 1 represents white. As color information
may contribute to more accurate classification, the system retains the original color channels
rather than converting the images to grayscale.

3.3 Features Extraction

Feature extraction is a crucial stage in the proposed skin cancer classification system. Its
primary goal is to transform raw image data into meaningful and discriminative features for
effective classification. The system utilizes a combination of DWT and PCA for both feature
extraction and dimensionality reduction. The resulting features are then fed into RNN to enhance
classification performance. DWT breaks the images down into four sub-bands (LL, LH, HL,
HH). Only the LL sub-band is used in the proposed system as it eliminates high-frequency noise
while preserving the most important characteristics. This effective representation lowers the
computational complexity without losing the feature set's correctness. To further optimize the
features extracted from the LL sub-band, PCA is applied. This technique reduces dimensionality
by identifying and retaining the most significant components of the feature set, thereby ensuring
an efficient representation while minimizing redundancy. The number of principal components is
set to 100, striking a balance between classification accuracy and computational efficiency.

3.4 RNN Model for classification

This study addresses the classification of skin lesions as a two-class problem: benign and
malignant. The problem is tackled using a deep learning approach with RNN-based architecture,
leveraging LSTM layers for enhanced feature processing. RNN processes the reduced feature set
for further classification and analysis. RNN are typically used for sequential data and captures
complex dependencies within the feature set. Therefore, the system reshapes the extracted feature
vectors into a two-dimensional sequential format to leverage the powerful processing capabilities

26



of RNNs, thereby enhancing the system’s ability to differentiate between benign and malignant

lesions. The architecture of RNN in this study consists of a sequence of LSTM layers with

dropout and batch normalization applied after each layer. The model learns hierarchical patterns

in the data by capturing spatial features through the LSTM layers.

Input: the input feature vectors, obtained from DWT and subsequently reduced in dimensionality

using PCA, are reshaped into a two-dimensional sequential format suitable for processing by the

LSTM layers.

LSTM Layers:

The core of the architecture comprises four LSTM layers:

e First LSTM Layer: Contains 128 units and outputs sequences for the subsequent layer.
Dropout is set at 25%, and batch normalization is applied to stabilize activations.

e Second LSTM Layer: Composed of 64 units, this layer also outputs sequences. Dropout is set
at 20%, and batch normalization is included.

e Third LSTM Layer: This layer has 32 units and outputs sequences to maintain temporal
dependencies. A dropout rate of 20% is applied along with batch normalization.

e Final LSTM Layer: Includes 32 units and outputs a feature vector used for classification.
Dropout is set to 25% to ensure effective regularization.

Output: is the binary classification via a sigmoid-activated neuron.

In this classification setup, the model is trained on labeled data (xi, yi), where xi € R® represents

the input features vector (image data), and yi is the binary label (O for benign and 1 for

malignant). The RNN model learns to optimize the binary cross-entropy loss function to classify

the images accurately. The model is optimized using the Adam optimizer with binary cross-

entropy loss to handle the binary classification problem. The training process is enhanced by call

backs such as Early Stopping and ReduceLROnPlateau, ensuring efficient learning and avoiding

over fitting. This approach offers a robust solution to the problem of skin cancer classification by

combining the power of deep learning with specialized image pre-processing techniques, such as

DWT and PCA, making it suitable for real-time medical applications. Figure 2 illustrates the

block diagram of the proposed model for skin cancer detection.

Input
(RGB Image)

v
Pre-Processing

e Image resizer
¢ Normalization RNN Model

l [ I STM ]

Feature Extraction [ Dronont ]
e DWT (LL sub band) > Batch
e PCA (for dimensionality Normalization
reduction)
v
Output

Decision (Benign / Malignant)

Figure 2: Illustrates how the model works.
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4. Experimental Results

This study uses ISIC dataset [25] to evaluate the proposed model for skin cancer detection. All images are
resized to 140 x 140 pixels to ensure uniformity in dimensions. Additionally, the pixel values are
normalized to a range between 0 and 1, where O represents black and 1 represents white.

The performance of the proposed model is valuated in terms of accuracy, which is defined as the
ratio of correctly classified samples to the total samples. Accuracy is calculated using the
following formula:

Accuracy = (7)
N=TP+FP+TN+FN (8)

(TP+TN)

Where: TP is the number of true positives, TN is the number of true negatives, FP is the number
of false positives, FN is the number of false negatives, and N is the total number of
samples.

Additionally, F1-score is utilized as metric in classification problem to measure the model’s

accuracy. This metric can be calculated as:

(Precision - Recall)

F1_score = . 9
- (Precision + Recall) )
Precision = L , Recall = L
(Tp+FP) (Tp+FN)

Where the used metrics (accuracy and F1-score) give a value between 0 and 1 where 1 is the
optimal value.

The proposed model utilizes the RNN architecture with features that are extracted from LL
sub-bands using DWT incorporating LSTM layers as a core component of RNN. The initial
version of the model is evaluated using ISIC dataset which included two classes:

e Benign: 30 images.

e Malignant: 240 images.
This version shows promising results, achieving an accuracy of 92% in classifying skin cancer
images.
To achieve better model performance, PCA is used to reduce the dimensionality of extracted
features from LL sub-bands. PCA focuses on significant components, minimizing noise, and
improving overall computational efficiency. Furthermore, a larger and more diverse dataset was
utilized, comprising:

e Benign: 120 images.

e Malignant: 1517 images.

With these improvements, the model achieved a significantly higher accuracy of 98%,
underscoring the effectiveness of combining advanced pre-processing techniques (DWT and
PCA) with the RNN architecture. The unified model shows strong capability in differentiating
benign from malignant skin lesions, underscoring the promise of deep learning in medical image
classification.

Table 1: The performance of proposed Model

Feature extraction | ISIC Dataset Accuracy F1-score
(%)
DWT 270 images (30 Benign and 240 Malignant) | 94% 0.95
DWT+PCA 1637 images (120 Benign and 1517 98% 0.99
Malignant)
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Accuracy

Figure 3 illustrates the accuracy progression of DWT with the RNN architecture during
training and validation across different epochs, providing a clear view of the model's
performance. The figure also shows the loss trends (measure of the model's error) highlighting
the decrease in both training and validation loss over time. Additionally, Figure 4 illustrates the
accuracy progression of DWT and PCA with the RNN architecture during training and validation
across different epochs, providing a clear view of the model's performance. The figure also shows
the loss trends (measure of the model's error) highlighting the decrease in both training and
validation loss over time.

Model Accuracy
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Figure 3: shows the accuracy and loss trends of the proposed model (DWT)
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Figure 4: shows the accuracy and loss trends of the proposed model (DWT+PCA).

4.1 Cross-Validation (5-Fold Cross-Validation)
To ensure accurate and comprehensive evaluation of the proposed model, a 5-Fold Cross-
Validation strategy was employed. This technique is widely adopted in machine learning research
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as it mitigates the risk of bias associated with static data splits and provides a realistic assessment
of the model’s generalization ability.

In this study, the whole dataset was randomly divided into five equal subsets (folds). For each
iteration, four folds were used to train the model while the remaining fold served as the test set.
This process was repeated five times, with each fold acting as the test set exactly once. Upon
completion, the mean and standard deviation of the performance metrics were calculated across
the five runs, offering a more stable and reliable estimate of model performance. The results
obtained from this validation process are summarized at Table 2.

Table 2: shows the summary of Cross-Validation Results

Metric Mean + Standard Deviation
Loss 0.1120 +0.0273

Accuracy 96.33% +1.08%

F1-Score 0.9803 + 0.0057

AUC 0.9538 +0.0320

False Positives (FP) 7.40 +3.26

False Negatives (FN) 4.60 +1.02

These results demonstrate a high degree of consistency in performance across folds, indicating
the model’s strong generalization capability and its robustness to variations in data splits. The
high average accuracy is 96.33% and F1-score is 0.9803 that suggest a well-balanced trade-off
between precision and recall. Moreover, the low rates of false positives and false negatives
confirm the model’s effectiveness in minimizing classification errors, which is especially crucial
in medical applications like skin cancer detection.

Overall, this cross-validation strategy validates the effectiveness of combining DWT, PCA,
and RNN architectures for the reliable and efficient classification of skin lesions, reinforcing the
model's potential for real-world clinical deployment.

Figure 5 illustrates the training and validation performance of the proposed method using the
RNN model. The left plot shows the accuracy progression across epochs, where the validation
accuracy reaches a maximum of 96.33%. The right plot presents the loss trends, indicating a
steady decrease in both training and validation loss over time, reflecting the model’s ability to
generalize effectively despite some fluctuations in validation loss. Figure 6 illustrates Final
summary of performance metrics obtained from 5-Fold Cross-Validation. The bar chart displays
the averaged values of AUC, F1-score, accuracy, and loss, as well as the average false positives
(FP) and false negatives (FN). Figure 7 reflects the model’s high classification accuracy and low
error rates, confirming its robustness and suitability for reliable skin cancer detection. . Table 3
shows a comparison between the proposed approach and previous work in [12, 15].
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Figure 7. ROC curves for 5-Fold Cross-Validation.

Table 3 shows a comparison between the proposed model and the models in [12, 15]

Feature extraction Model Accuracy
DWT+PCA RNN 98%
proposed method

DWT+PCA+ 0
5-Fold Cross-Validation RNN 96.33%
CNN in [15] RNN 94.48%
DWT in [12] CNN 94%
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5. Conclusion and Future Work

This paper presented a deep learning framework for skin lesion classification, employing an
RNN with LSTM layers. Features were extracted from the LL sub-bands of the DWT, followed
by dimensionality reduction using PCA to retain the most informative features while enhancing
computational efficiency. The proposed approach achieved a high classification accuracy of 98%.
Furthermore, a 5-fold cross-validation was conducted, resulting in an average accuracy of
96.33%, confirming the robustness and generalizability of the model across different subsets of
the dataset.

Future research will focus on expanding the dataset in both size and diversity to further
improve model generalization. Additionally, integrating explainable Al techniques could provide
clinicians with interpretable insights, supporting practical adoption in dermatological diagnostics.
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