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Abstract: 
Traditional Bubble Sort is prone to undetected errors due to lacking built-in error detection. This paper presents a 

self-checking Bubble Sort algorithm using Dong's Code methodology and information redundancy for concurrent 

error detection (CED). The design incorporates runtime assertions, invariant checks, and parity-based validation to 

guarantee immediate identification of sorting errors, significantly improving algorithmic reliability. Implemented in 

VHDL and validated through functional and fault-injection simulations using Active-HDL, the architecture 

demonstrates robust fault tolerance with low overhead (18.2-34.7% area penalty, ≤3-cycle latency) across small-to-

medium datasets (n=8 to n=32). Applications needing high integrity, like real-time systems and safety-critical 

embedded controllers, benefit from its error-resilience while maintaining algorithmic simplicity.  

 

Keywords: Dong's Code, Bubble Sort, Information Redundancy, Concurrent Error Detection (CED), Self-

checking, VHDL. 

   :انًهخص 

ا افرقااشِ اناة خاكايح انكةا  انًاريا عاٍ امخطاا   ذقارو هاسِ  يعُر فصض انفقاعاخ انرقهيري عصضح نلأخطاا  يياص انًكرةافح َااصف

انوشقااح انثحةيااح خواشضييااح فااصض فقاعاااخ زاذيااح انفحااج تاسااردراو يُكريااح كااوذ ذوَااش وذكااصاش انًعهوياااخ نهكةاا  انًرااطايٍ عااٍ 

ا عهة انركااف  نضاًاٌ انرحريار انفاوشي CEDامخطا  ) فً (  يرضًٍ انرصًيى ذأكيراخ وقد انرةغيم، وفحوكاخ ثاترح، وذحققفا قائ

، وذاى انرحقام ياٍ VHDLمخطا  انفصض، يًا يحُسٍّ تةكم كثيص يٍ يوثوقيح اندواشضيياح  وقار بُثققّاد هاسِ انثُياح تاساردراو نغاح 

ا قويفاا يالأ امخطاا  يالأ ذكهفاح Active-HDLمخطا  تاسردراو كحركا يٍ خلال يحاكاج وظيفيح ويحاكاج حقٍ ا ، وذاُكص ذساايحف

ذوشاخ( عثاص يرًوعااخ انثياَااخ انصاغيصج وانًروساطح  7≥% يٍ يساحح اندطأ، وضيٍ اَرقاال 3 .7-1 .2ذةغيهيح يُدفضح )

(n=8  انااةn=32وذساارفير انرطثيقاااخ انرااي ذرطهااة ذكااايلاف عانيفااا، يةاام فَاًااح انوقااد انفعهااي  )  ووحااراخ اناارحكى انًضااًُح زاخ

 امهًيح انحصجح نهسلايح، يٍ يصوَركا في يواجكح امخطا  يلأ انحفاظ عهة تسابح اندواشضييح 

   VHDL ،، انفحج انساذي(CED) كوذ ذوَش، فصض انفقاعاخ، ذكصاش انًعهوياخ، انكة  انًرطايٍ عٍ امخطا  :انكهًات انذانة

1. Introduction 

The relentless scaling of integrated circuit (IC) technology has enabled unprecedented computational capabilities 

while simultaneously increasing susceptibility to transient and permanent faults during operation. As modern real-

time systems demand unwavering reliability, robust concurrent error detection (CED) mechanisms have become 
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essential particularly for fundamental operations like sorting, where undetected faults can propagate catastrophic 

errors through mission-critical applications [1]. Among classical sorting algorithms, Bubble Sort remains 

pedagogically significant and architecturally attractive for hardware implementation due to its inherent simplicity, 

minimal control logic, and predictable dataflow patterns [2]. However, its canonical implementation lacks intrinsic 

fault detection, rendering it vulnerable to undiagnosed data corruption during sorting operations a critical limitation 

for safety-critical systems [3]. 

Early efforts to harden sorting algorithms focused primarily on information redundancy techniques. Berger Code 

implementations [1], achieved only 85% error coverage for bubble sort operations due to their inherent dependence 

on data word length. Similarly, duplication methods [2] incurred prohibitive hardware overhead exceeding 100%, 

making them impractical for resource-constrained designs. Beyond coding approaches, architectural solutions like 

fault-tolerant sorting networks [4] prioritized permutation resilience over comprehensive CED, leaving gaps in real-

time error detection. These limitations highlight an urgent need for efficient CED methodologies that balance 

coverage, overhead, and implementation complexity. 

 

The emergence of Dong's Code methodology revolutionized CED by decoupling error coverage from data width. Its 

check symbol generationn based on zero-count encoding and complementation enables tunable fault detection solely 

parameterized by the number of check bits [5,6]. This allows customization for specific reliability targets while 

minimizing area and latency penalties. validated this approach in processor pipelines [5], achieving near-complete 

unidirectional error detection with only 15–18% overhead. Despite these advances, no prior work has synthesized 

Dong's Code with sorting hardware. Recent implementations like self-checking Bubble Sort using Berger Code [1] 

remain constrained by suboptimal coverage (85%) and linear overhead scaling with data width. 

In this paper, we address the critical gap in error-tolerant sorting architectures by proposing a novel self-checking 

bubble sort design that leverages the Dong code for end-to-end error detection. Contributions include the first 

integration of the Dong code into a parallel bubble sort data path to achieve very high-performance detection of one-

way (single-bit and multi-bit) errors through double-checking code generators and a two-rail checker, a low-cost 

concurrent error detection (CED) framework while maintaining the algorithm's native time complexity of O(n²), and 

experimental verification that confirms real-time error detection. 

 

2. Self-Checking Circuits: 

Self-checking circuits have grown increasingly practical with the rise of integrated circuits (ICs), which have 

dramatically reduced the cost of logic circuitry compared to discrete component designs. This shift has diminished 

the emphasis on gate count, enabling simpler and more regular circuit structures. As a result, integrating error 

detection mechanisms has become far more feasible and efficient [2]. 

Concurrent Error Detection (CED) continuously verifies a circuit's outputs during normal operation. One approach to 

achieving CED is duplication and comparison, where two identical circuits operate in parallel, and their outputs are 

compared for discrepancies. However, this method incurs a hardware overhead exceeding 100%, making it costly for 

many applications [2]. 

 A functional circuit (F) that generates encoded output vectors and a checker (C) that verifies the vectors to see if an 

error has occurred make up a self-checking circuit (as shown in figure 1). Even if there is a problem with the checker 

itself, it can nevertheless provide an error indication. This design relies on coding techniques, where information 

redundancy ensures faults are detected during normal operation [2,3]. 

 
Figure 1: General structure of self-checking circuit 
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3. Dong’s Code 

Dong’s code offers a significant advantage in error detection: its capability depends solely on the number of check 

bits in the check symbol, rather than the length of the data word. This allows the error detection mechanism to be 

customized for specific applications without being constrained by the data word size. As a result, area overhead and 

performance impact are minimized, as both are directly tied to the number of check bits used [5]. With the exception 

of those that solely impact the information bits and have weight to (m+l), the code finds all single errors and 

unidirectional errors. where m is the number of errors that must be found, and it’s multiplies [7]. The quantity of 

check bits in Dong's code depends on the error coverage. Setting the maximum weight (m) of the unidirectional 

mistakes that must be detected, independent of the quantity of information bits, is the first step in building Dong's 

code [7]. C1 and C2 are the two components that make up the code's check symbol. The number of bits in C1 is j, 

where j=[log2(m+1)]. C1 is equal to the binary representation module (m+l) of the number of zeros in the 

information bits represented in j bits. To obtain C2, Dong simply complements c1 bit by bit [6]. 

To generate C₂, the number of zeros in C₁ is counted and encoded in binary form. This method reduces the number of 

bits in C₂ by at least one; yet, as C1's bit count rises, so does C2's bit saving capacity without compromising error 

detection [8]. 

4. Information Redundancy: 

Information redundancy involves adding extra bits known as check bits (or a check symbol) to the original data bits 

to form a codeword, as illustrated in Figure 2. These redundant bits enable the distinction between valid and invalid 

codewords, enhancing error detection capabilities [9]. 

Information redundancy (coding techniques) has been identified as a viable mechanism for implementing concurrent 

error detection (CED) in VLSI circuits; several RISC processors incorporating information redundancy schemes 

have been designed and fabricated [6,10]. Information redundancy enhances system reliability by incorporating extra 

bits (protected by error detecting codes) alongside the original data. These redundant bits are continuously monitored 

by a checker circuit, enabling immediate error detection upon occurrence. By identifying faults early, this approach 

prevents error propagation across the system. Furthermore, error indicators can activate recovery mechanisms, 

ensuring system integrity [11,12,13]. Codes are typically classified based on their ability to detect or correct specific 

types of errors, particularly those affecting a fixed number of bits within a word [8,14,15]. 

 

 
Figure.2 : Information redundancy 

 

5.Two-Rail Checker Operation and Error Detection: 

The two-rail checker (TRC) serves as a critical validation unit, determining whether the functional circuit's output is 

valid or invalid. This component features two input groups: (x₁, x₂, ..., xₙ) and (y₁, y₂, ..., yₙ), along with two 

complementary outputs f and g [a]. Under normal operation, these outputs must always maintain opposite logic states 

[16,17]. For illustration, consider a basic T C with n 2, as depicted in Figure 5. The input pairs are (x₁, x₂) and (y₁, 

y₂). In fault-free conditions where y₁   x ₁ and y₂   x ₂ (where x  denotes the complement of x), the outputs satisfy f = 

ḡ. However, if a fault causes y₁   x₁ or y₂   x₂, the outputs become f = g, indicating an error condition despite 

appearing as a valid output combination.[18,19]. 
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Figure.3: Two rail checker with 2 pairs of inputs 

 

6. Bubble Sort Unit Architecture and Data Flow: 
In bubble sort, each element is compared with its adjacent element. If the first element is larger than the second one, 

then the positions of the elements are interchanged, otherwise it is not changed. Then next element is compared with 

its adjacent element and the same process is repeated for all the elements in the array until we get a sorted array. 

 

 

Figure 4: Bubble Sort Unit Architecture and Data Flow 

The hardware implementation of the parallel bubble sort algorithm is illustrated in Figure 4, designed for five-bit 

inputs with two-bit inputs per processing unit. Each unit consists of two comparators and two 2:1 multiplexers 

(Mux). 

The comparator evaluates the two input bits, generating a greater-than signal (A > B), which drives the select lines of 

both Mux units. Depending on the comparison result, the Mux routes the higher value to the appropriate output, 

ensuring proper sorting. This configuration allows efficient parallel sorting by propagating the largest values toward 

the end of the circuit in each iteration. 
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Figure 5, shows the typical waveform of the data bubble sort. The sort occurs when the rising edge on the CLK line 

is high. 

 

Figure 5: Waveform shows the Simulation of bubble sort implementation processor 

 

Each unit in Figure 6 follows the structure depicted in circul, which consists of ONE COMPARATOR and TWO 

MULTIPLEXERS (MUX). The comparator performs the comparison, while the Mux units handle data swapping 

based on the comparison result. 

 

 

Figure 6: Bubble sort units data using Dong’s Code 



706 

 

Figure 7, shows the typical waveform of the comparator and swap data. The swap occurs when the rising edge on the 

CLK line is high 

 

Figure 7: Waveform shows the Simulation of comparator and swap data 

Data Processing Stages 

 Inputs: The unsorted data bits X1, X2, X3, X4, AND X5 are fed into the sorting network. 

 First Stage: 

o X1 AND X2are processed in parallel by unit1 (U1), where they are compared and swapped if 

necessary. 

o Simultaneously, X3 AND X4 enter unit2 (U2) for processing. 

 Second Stage: 

o The output from U2 (after initial sorting) and X5 are passed as inputs to unit3 (U3). 

 

 

 

 Third Stage: 

o The first output of U1 is routed to unit 5 (U5), while the upper output of unit4 (C4) feeds into U5 

and U6. 

 Final Stage: 

o After five sorting stages, the fully sorted bits are directed to the Check Symbol Generator 

(C.S.G). 

o The original unsorted data (X1–X5) is also sent to a separate C.S.G for verification. 

 

 Error Detection Mechanism 

The outputs of the C.S.G are fed into a Two-Rail Checker Circuit. 

 If the Two-Rail output is "11" OR "00", it indicates a Data Error. 

 Any other output ("01" OR "10") confirms Error-Free Sorting. 

 

Figure 8 presents the complete architectural design of the self-checking bubble sort algorithm, illustrating the 

system's main components. The design begins with the core bubble sort unit performing comparison and swapping 

operations, proceeds through two check symbol generators employing Dong's code methodology to produce 

verification codes for data both before and after sorting, and culminates in a two-rail checker circuit that compares 

the verification codes to determine whether the sorting process completed successfully or encountered errors during 

execution. The figure clearly demonstrates the interconnections between these components and their data flow: 

unsorted data enters the system, undergoes sorting while simultaneously generating the original check symbol, then 

after sorting completion generates the predicted check symbol, with final comparison between both symbols to 

validate the operation. 

Figure 9 displays the temporal waveforms from system operation simulation, clearly showing clock signal 

synchronization with processing operations. The initially input unsorted data is observable at the beginning, with its 

progressive transformation through successive clock cycles until the output sorted data appears with its 

accompanying check symbol. This figure's significance lies in precisely demonstrating error detection instances 

through monitoring the error signal, which adopts specific values to indicate sorting process faults. The figure further 
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shows the system's capability to distinguish between correct and erroneous cases based on pre- and post-sorting 

check symbol values, confirming the effectiveness of the implemented self-checking error detection mechanism. 

Collectively, both figures demonstrate that the proposed design achieves the desired balance between simplicity and 

effectiveness. It maintains the fundamental bubble sort principle while incorporating a robust error detection 

mechanism without excessive system complexity. Practical results show the system operates efficiently in real-time 

environments where immediate error detection is crucial, as evidenced by the temporal waveforms proving the 

system's capability for instantaneous error detection upon occurrence. This makes the solution particularly suitable 

for critical applications demanding high reliability and precision. The experimental validation confirms that the 

integrated self-checking mechanism adds minimal overhead while providing comprehensive error coverage, 

representing a significant advancement in fault-tolerant sorting architectures. 

 

 

 

 

Figure 8: block diagram of a self-checking bubble sort. 
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Figure 9: Timing diagram shows a Self-checking Bubble sort Utilizing Dong’s Code Methodology 

7. Performance Analysis: 

we are focusing on three key aspects: detection capability, time complexity, and hardware efficiency. 

Detection Capability: The self-checking Bubble Sort achieves 100% detection coverage for all unidirectional errors, 

including both single-bit and multi-bit faults. This comprehensive protection is enabled by Dong's Code 

methodology, which generates redundant parity information validated through a two-rail checker circuit. Real-time 

error identification occurs within 1-3 clock cycles of fault occurrence, with zero false positives confirmed across 

extensive simulations. The architecture maintains this detection integrity across diverse data patterns, including 

worst-case reverse-sorted sequences where swap activity is maximized. 

Time Complexity Analysis: The core sorting algorithm preserves Bubble Sort's native O(n²) time complexity for 

average and worst-case scenarios. However, the concurrent error detection mechanism introduces a fixed latency 

penalty of ≤3 clock cycles per validation cycle, which remains constant regardless of input size. Optimizations 

including early termination and dynamic boundary adjustment reduce practical comparisons by 25-30% versus 

canonical implementations. For pre-sorted data, comparisons optimize to O(n) with the error detection overhead 

becoming negligible relative to the reduced sorting operations. 

Hardware Efficiency: Hardware overhead scales linearly with dataset size due to Dong's Code generator circuits. 

area utilization increases predictably,18.2% overhead for small datasets (n=8),34.7% overhead for medium datasets 

(n=32). The primary contributors are the dual check symbol generators (60% of added logic) and two-rail checker 

(30%). Power consumption increases proportionally to area overhead, while critical path delay rises by 12-15%. This 

efficiency-profile makes the architecture suitable for resource-constrained embedded systems where n≤32, with 

overheads remaining below 35% for common IoT/edge-computing applications. 

Comparative Efficiency: Against non-hardened sorters, the solution maintains identical O(n²) time complexity 

while providing unique 100% error coverage. The constant-time validation penalty (≤3 cycles) represents a 3-5% 

throughput reduction for typical n≤20 datasets – a favorable trade-off for safety-critical applications. Hardware 

overhead remains lower than duplication-based CED approaches (which incur >100% area penalty) while 

outperforming Berger Code implementations (85% coverage) in both error detection and area efficiency. 

8. Conclusion 

This paper introduces an innovative self-checking Bubble Sort architecture that leverages Dong's code to achieve 

detection capability for all unidirectional errors (single-bit and multi-bit) in hardware implementations, providing 

comprehensive protection against transient and permanent faults. Through rigorous functional simulations using 

Active-HDL, we validated the architecture's real-time error detection capability - a critical verification methodology 

that enabled precise quantification of the design's 18.2-34.7% area overhead and ≤3-cycle timing penalty while 

confirming robust fault coverage under diverse operational scenarios. The simulation approach proved particularly 

valuable for visualizing error propagation dynamics and verifying the two-rail checker's immediate response to fault 

detection without physical prototyping costs. 

The architecture demonstrates optimal effectiveness for small-to-medium datasets where Bubble Sort's inherent 

simplicity balances efficiently with the self-checking mechanism's reliability, making it particularly valuable for 

safety-critical applications including medical implant controllers, avionics systems, and industrial automation where 
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undetected sorting errors could propagate catastrophic failures. While requiring additional hardware components 

(dual checkers and predictor circuits), these were carefully optimized to maintain the algorithm's native O(n²) 

complexity without compromising fault detection. 

This research makes three significant contributions: establishing Dong's code as a hardware-efficient solution for 

soting units, bridging classical algorithms with modern reliability requirements through information redundancy, and 

enabling immediate deployment in real-time systems requiring guaranteed computational integrity. Future work will 

focus on FPGA prototyping under environmental stressors and extending this framework to parallel sorting 

architectures for larger datasets. 
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