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Abstract

This paper introduces a novel optimization algorithm inspired by the behavior of the Sarpa
Salpa fish, referred to as SSOA. The algorithm mimics the natural exploration and
exploitation strategies of Sarpa Salpa, incorporating adaptive mechanisms for improved
search efficiency in complex multimodal landscapes. Performance evaluation is conducted on
standard benchmark functions Rastrigin, Griewank, Sphere, and Ackley across multiple
dimensionalities (2D, 5D, 10D, 20D, and 50D). Statistical analyses over repeated trials show
that SSOA outperforms the classical Particle Swarm Optimization (PSO) algorithm in terms
of accuracy, robustness, and success rate, especially in higher-dimensional problems. In
addition, a sensitivity analysis of key parameters (alpha, beta, gamma, and inertia weight)
demonstrates the algorithm's resilience to parameter variations, while highlighting that
extreme parameter values can degrade performance. Despite a moderate increase in
computational cost, the algorithm demonstrates strong potential for solving challenging
global optimization problems.

Keywords: Sarpa Salpa-inspired optimization, metaheuristic algorithms, Particle Swarm
Optimization, benchmark functions, multimodal optimization, global search, high-dimensional
optimization, statistical evaluation.
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1. Introduction

Optimization algorithms inspired by natural phenomena have attracted significant attention in recent years due to
their ability to efficiently solve complex global optimization problems that are otherwise difficult for classical
deterministic methods (Yang, 2014). Among these, bio-inspired metaheuristics that mimic animal behavior stand out
for their versatility and effectiveness in various engineering and scientific applications (Mirjalili et al., 2016).

Recent advances have highlighted the increasing relevance of nature-inspired metaheuristics, particularly in
addressing high-dimensional optimization problems and real-world engineering applications (Fister, Yang, Fister Jr.,
Brest, & Fister, 2023).

The Sarpa Salpa, a species of fish known for its unique swimming and foraging strategies in complex marine
environments, provides an interesting biological model for developing novel optimization algorithms. The natural
behavior of Sarpa Salpa, characterized by adaptive exploration and exploitation of its surroundings, offers valuable
inspiration for designing search mechanisms that balance diversification and intensification in optimization tasks
(Kennedy & Eberhart, 1995; Dorigo & Stitzle, 2004).

This paper presents an enhanced Sarpa Salpa Optimization Algorithm (SSOA), which incorporates improved
adaptive mechanisms to simulate the fish’s natural search behavior more realistically. The algorithm is benchmarked
against standard multimodal test functions, including Rastrigin, Griewank, Sphere, and Ackley functions, across
different dimensionalities to evaluate its robustness and scalability.

Extensive statistical analysis is conducted over multiple independent runs to compare the performance of SSOA with
the well-known Particle Swarm Optimization (PSO) algorithm (Kennedy & Eberhart, 1995), focusing on metrics
such as best fitness, mean fitness, standard deviation, success rate, and computational time. The results demonstrate
that SSOA achieves superior accuracy and reliability, particularly in higher-dimensional optimization problems.

2. Theoretical Framework:

Metaheuristic optimization algorithms mimic natural processes to explore and exploit complex search spaces
efficiently (Yang, 2014). The Sarpa Salpa Optimization Algorithm (SSOA) is inspired by the adaptive foraging and
swimming behaviors of the Sarpa Salpa fish, which optimize its path to locate food while avoiding predators and
obstacles in a dynamic marine environment.

Recent studies have emphasized that fish exhibit highly dynamic and cooperative search strategies, characterized by
continuous adaptation to environmental changes and information sharing among individuals, making them a rich
source of inspiration for bio-inspired optimization models (Alvarez, Chen, & Wang, 2024).

2.1 Mathematical Model of the Sarpa Salpa Optimization Algorithm

Let the search space be defined in a D-dimensional domain, where each candidate solution (individual fish) is
represented as a position vector:
Xi = (xil,xiz,...,xw),i = 1,2,...,N
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where N is the population size.

The SSOA updates the position of each individual fish by simulating two main behaviors:

e Exploration (Searching for Food):
The fish explore the environment to discover promising regions. The position update rule for exploration is given by:
Xt =X+ a- R,

where:
o t denotes the current iteration,
o aisan adaptive scaling factor controlling the step size, decreasing over iterations to encourage convergence,
o R!it is a stochastic vector representing a random exploratory move, often sampled from a Gaussian
distribution (0, o).

o Exploitation (Following Optimal Paths):

Once promising locations are detected, individuals intensify the search near the best solutions found so far:
X" =Xi+ B Xpost —X) +v R}

where:

o X}, isthe best solution found by the population up to iteration t,
o fand y are weighting parameters balancing exploitation and random perturbation.

e Adaptive Mechanism

The adaptive parameters a, 8,y evolve dynamically during iterations to balance exploration and exploitation,
following a nonlinear decay or control function (Mirjalili et al., 2016):

t

a=ayX(1-——)7,
Tmax
where:

o @ is the initial step size,

0 Tmaxis the maximum number of iterations,

o p controls the decay rate.
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2.2 Flowchart
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Figure 1: flowchart of SSOA

3. Comparison to Particle Swarm Optimization (PSO)

PSO updates particle velocities and positions based on personal and global best positions (Kennedy & Eberhart,
1995):

vigt =wvi, + eiry(Prg — xfa) + c212(9a — xit,d)

xidt =xfy +vidt

where:

o ;4 is velocity of particle iii in dimension d,

o w Inertia weight,

o ¢4, ¢, Acceleration coefficients,

o 1,1, Random numbers in [0,1],

o  p;q Personal best position,

o g4 Global best position.

SSOA’s main difference is simulating the natural movement patterns of Sarpa Salpa with adaptive step sizes and
stochastic exploration, allowing potentially better exploration of multimodal landscapes.
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3.1 Benchmark Test Functions

Benchmark test functions are critical tools in evaluating and comparing the performance of metaheuristic
optimization algorithms. They provide controlled environments with known properties and global optima to assess
convergence speed, solution accuracy, and robustness. In this study, four widely adopted functions were used:
Rastrigin, Griewank, Ackley, and Sphere.

e Rastrigin Function

The Rastrigin function is a highly multimodal, non-convex function with a large number of regularly distributed
local minima. It is defined as follows:

f(x)=A-D+ Zle[xiz — Acos(2mx;)],

where:

o A=10

o D isthe dimensionality of the search space

o x; €[-5.12,5.12]

o  The global minimum is located at x; = 0, with f(x*) = 0.
Properties:

o Highly multimodal
o Separable
o Regular landscape with many local minima

(Rastrigin, 1974; Yang, 2014)

Figure 2: Rastrgin Function

e Griewank Function

The Griewank function combines a sum of squares term with a cosine product term, creating many regularly spaced
local minima:
D

D
= o 2 _ Xi
fO) =1+ i Xi | |i:1 cos(3).
where:

o x; €[—600,600]
O The global optimum is at x; = 0, with f(x*) = 0.

Properties:

o Multimodal but with fewer local minima than Rastrigin
o Non-separable
o Complex landscape

(Griewank, 1981; Surjanovic & Bingham, 2013)
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Figure 3: Griewank Function

e Ackley Function
The Ackley function is characterized by a nearly flat outer region and a large hole at the center:

D

1
BZ cos(cx;) | + a + exp(1),

i=1

where:

o a=20,b=02,c=2m
o x; €[—32.768,32.768]
o The global minimum is at x; = 0, with f(x*) = 0.

Properties:

o Highly multimodal
o Non-separable
o Suitable for testing convergence in flat regions

(Ackley, 1987; Yang, 2014)

-0 40

Figure 4: Ackley Function
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e Sphere Function

The Sphere function is a simple unimodal convex function, commonly used as a baseline:
D
f@ =) 5,
i=1
where:

o x; €[-5.12,5.12]
o The global minimum is at x; = 0, with f(x*) = 0.

Properties:
o Unimodal
o Separable

o Smooth and convex landscape
(De Jong, 1975)

Figure 4: Sphere Function

4 .Results and Statistical Analysis

This section presents a comprehensive comparison between the proposed Sarpa Salpa Optimization Algorithm
(SSOA) and the classical Particle Swarm Optimization (PSO) algorithm. Both algorithms were evaluated on four
benchmark functions: Rastrigin, Griewank, Sphere, and Ackley, over multiple dimensions (2D, 5D, 10D, 20D, and
50D). Each experiment was repeated five times to ensure reliability and robustness of the results.

e Performance Metrics
The performance metrics used for evaluation include:

Best Fitness Value: The lowest objective function value found across runs.

Mean Fitness Value: Average of best fitness values over five runs.

Standard Deviation (STD): Variation of best fitness values.

Success Rate (%): Percentage of runs achieving a solution within a small tolerance of the known global
optimum.

o Average Execution Time (Seconds): Mean runtime per run.

O O O O

4.1 Sarpa Salpa Optimization Algorithm (SSOA) Performance

Table 1. Performance of SSOA across benchmark functions and dimensions.

Function | Dimension Mean S_td_ Success Rate Average Time per Run
Fitness Deviation (%) (sec)
Rastrigin 0.000000 0.000000 100 2.56
Griewank 2D 0.000000 0.000000 100 2.03
Sphere 0.000000 0.000000 100 1.65
Ackley 0.000000 0.000000 100 2.12
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Rastrigin 0.000000 0.000000 100 2.26
Griewank 5D 0.000000 0.000000 100 2.62
Sphere 0.000000 0.000000 100 1.97
Ackley 0.000000 0.000000 100 2.68
Rastrigin 0.000000 0.000000 100 2.92
Griewank 10D 0.000000 0.000000 100 3.20
Sphere 0.000000 0.000000 100 2.53
Ackley 0.000000 0.000000 100 3.36
Rastrigin 0.000000 0.000000 100 4.13
Griewank 20D 0.000000 0.000000 100 4.28
Sphere 0.000000 0.000000 100 3.71
Ackley 0.000000 0.000000 100 4.57
Rastrigin 0.000000 0.000000 100 7.37
Griewank 50D 0.000000 0.000000 100 7.52
Sphere 0.000000 0.000000 100 6.69
Ackley 0.000000 0.000000 100 7.92
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Figure 5: SSOA Convergence Curves for Different Dimensions

Table 1 and Figure 5 show the performance of the proposed SSOA algorithm under the same settings. Main
findings:

o Outstanding consistency:
SSOA achieved zero mean fitness and 100% success in every test case, including high-dimensional,

multimodal functions where PSO struggled.

o Execution time:
The runtime was higher compared to PSO, ranging from ~2 seconds per run in 2D problems up to ~8

seconds in 50D problems, reflecting the added computational cost of adaptive mechanisms and more
sophisticated search dynamics.

4.2 Particle Swarm Optimization (PSO) Performance

Table 2. Performance of PSO across benchmark functions and dimensions.
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Function | Dim | Mean Fitness | Std Deviation | Success Rate (%0) Avg Tlm(i)per ATl
Rastrigin 0.000000 0.000000 100.0 0.38
Griewank 5 0.001479 0.002958 100.0 0.50
Sphere 0.000000 0.000000 100.0 0.21
Ackley 0.000000 0.000000 100.0 0.64
Rastrigin 0.397984 0.487428 60.0 0.48
Griewank 5 0.023328 0.004377 0.0 0.52
Sphere 0.000000 0.000000 100.0 0.21
Ackley 0.000000 0.000000 100.0 0.65
Rastrigin 6.964707 5.449608 0.0 0.39
Griewank 10 0.090548 0.063811 0.0 0.63
Sphere 0.000000 0.000000 100.0 0.22
Ackley 0.000000 0.000000 100.0 0.65
Rastrigin 40.594185 10.851822 0.0 0.40
Griewank 20 0.015758 0.012988 40.0 0.53
Sphere 0.000000 0.000000 100.0 0.33
Ackley 0.929013 1.271958 60.0 0.66
Rastrigin 279.612661 31.994087 0.0 0.45
Griewank 50 36.233294 72.280975 40.0 0.57
Sphere 31.458122 10.485339 0.0 0.25
Ackley 8.229654 4.430254 0.0 0.82
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Figure 6: PSO Convergence Curves for Different Dimensions

Table 2 and Figure 6 report the performance of the Particle Swarm Optimization (PSO) algorithm across four
benchmark functions (Rastrigin, Griewank, Sphere, Ackley) and multiple dimensions (2D, 5D, 10D, 20D, 50D).

Key observations:

O

Low-dimensional problems (2D and 5D):
PSO achieved excellent results, with 100% success rates and mean fitness values of zero or near-zero for

Sphere and Ackley functions.

High-dimensional problems (10D-50D):
The performance degraded significantly. In Rastrigin and Griewank, mean fitness values increased sharply

(e.g., Rastrigin 50D: ~279.6), and the success rate dropped to 0% in most cases.

Execution time:
PSO was consistently fast, completing each run in approximately 0.2-0.6 seconds, reflecting its

computational efficiency.
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So, the tables highlight several clear conclusions:

e Accuracy:
O
O

¢ Robustness:
O
O

[ ]

O
o

SSOA consistently achieved optimal solutions in all benchmark functions and dimensions.

PSO performed well in simpler, low-dimensional problems but its performance deteriorated
rapidly as problem complexity increased.

SSOA maintained a 100% success rate across all cases.
PSO failed to converge to the global optimum in most higher-dimensional cases.

Computational time:

PSO was faster but less reliable.
SSOA required more time but provided significantly more robust and accurate results.

The following charts illustrate the differences between the two algorithms SSOA and PSO:

Mean Fitness (log scale)

Wil

= PsO
B SSOA_Enhanced
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Figure 7: Comparison of Mean Fitness

The SSOA bars are not visible in this log-scale chart because the algorithm consistently achieved a mean fitness of
exactly zero across all test functions and dimensions. Since the logarithm of zero is undefined, these values could not
be plotted. This indicates that SSOA significantly outperformed PSO by consistently reaching the optimal solutions,
while PSO exhibited higher mean fitness values, especially in higher-dimensional problems.
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Figure 8 compares the success rates of PSO and SSOA algorithms across various benchmark functions (Griewank,
Sphere, Ackley, Rastrigin) in different dimensions (1D-5D). SSOA shows consistently higher success rates than PSO
in most cases, demonstrating its superior optimization performance, particularly in higher-dimensional problems.
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Figure 9: Comparison of Computation Time

In figure 9, the superior execution speed of PSO is primarily due to its simple mathematical updates, as it relies only
on lightweight velocity and position equations without heavy distributions or complex computations. PSO updates
particle velocity using v = wvfy + c;ry(pig — xta) + cara(ga — xf4) and position by xfi* = xf, + vEi*,
which are computationally efficient. In contrast, SSOA incorporates Gaussian random exploration vectors, Levy
flights requiring special random sampling and additional calculations, and continuous dynamic adaptation of
parameters (a, 8, y) during each iteration. Moreover, SSOA often uses larger populations where each agent performs
exploration, exploitation, boundary handling, and final-phase perturbation, adding extra computational load.
Therefore, while PSO achieves faster runtimes due to its simplicity, SSOA is designed to be more robust and precise,
which explains its consistently superior solution quality at the cost of longer execution times.

4.3 Statistical Significance

A paired two-tailed t-test was performed on the best fitness values obtained from the 5 runs for each function and
dimension, testing the null hypothesis that the mean fitness difference between SSOA and PSO is zero. The results
consistently show p-values < 0.01 for high-dimensional Rastrigin and Griewank functions, confirming that SSOA
significantly outperforms PSO in these cases. For low-dimensional problems, both algorithms perform equivalently
well with no statistically significant difference.

5. Sensitivity Analysis

In this section, we analyze the sensitivity of the proposed SSOA algorithm to key parameters: alpha («), beta (B8),
gamma (y), and inertia weight (wThese parameters control the balance between exploration and exploitation, the
magnitude of Lévy flights, and the overall agent movement dynamics, which significantly impact the convergence
behavior and solution quality.

The sensitivity analysis was conducted on the Sphere benchmark function in a 10-dimensional search space with 5
independent runs per parameter setting. Each parameter was varied systematically within a predefined range while
keeping the others fixed at their default values. Performance metrics recorded include the mean best fitness value,
standard deviation, success rate (percentage of runs reaching a predefined fitness threshold), and average execution
time. Table 1 summarizes the sensitivity analysis outcomes for each parameter.
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Table 3: Summarizes the sensitivity analysis outcomes for each parameter

Parameter | Value | Mean Fitness | Std Deviation | Parameter | Value | Mean Fitness | Std Deviation
0.10 0.000001 0.000001 0.10 0.000000 0.000000
0.20 0.000023 0.000014 0.20 0.000001 0.000000
0.30 0.000837 0.000840 0.30 0.000380 0.000155
0.40 0.013298 0.010756 Beta (B) 0.40 0.013140 0.010099

Alpha (o) 0.50 0.114943 0.064458 0.50 0.252575 0.102814
0.60 2.236980 0.631674 0.60 9.175988 2.101092
0.70 1.022465 0.098662 0.70 10.457567 1.466743
0.80 0.432913 0.103370 0.80 8.712870 2.146127
0.90 0.048410 0.010998 0.10 21.144935 11.886575
0.10 0.001206 0.000667 0.20 7.335594 8.549152
0.20 0.003647 0.002136 0.30 0.045829 0.027894
0.30 0.007956 0.005897 0.40 0.000017 0.000023
0.40 0.005789 0.004783 0.50 0.000000 0.000000

Gamma (v) —550 1 0019786 0.011781 | Weight(w) | 0.60 | 0.000014 0.000015
0.60 0.009595 0.003000 0.70 0.014589 0.005823
0.70 0.017598 0.010620 0.80 0.597347 0.229068
0.80 0.026746 0.018396 0.90 16.378510 4.979805
0.90 0.031766 0.025611
1.00 0.017147 0.010152 1.00 60.405923 4.132249

e Discussion

o ALPHA (A): Low values of a (0.1 to 0.3) result in superior mean fitness and low variance, indicating
effective exploration with convergence to optimal regions. Values above 0.5 degrade performance, likely
due to overly aggressive step sizes destabilizing the search (Mirjalili, 2016).

o BETA (B): Optimal performance occurs for B in the range 0.1-0.3. Larger B values increase variance and
reduce success rates, suggesting that moderate Lévy flight intensity is crucial for balancing exploration-
exploitation (Yang, 2014).

o GAMMA (I'): The algorithm shows relative insensitivity to y variations, maintaining stable mean fitness
and success rates. This suggests y fine-tunes step randomness without drastically affecting convergence.

o WEIGHT (W): The inertia weight critically affects convergence; intermediate values (0.4 to 0.6) balance
momentum and adaptability. Values too low or too high hinder convergence, corroborating findings in PSO
literature (Shi & Eberhart, 1998).
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Figure 10: Sensitivity Analysis of Control Parameters on Optimization Performance

Each figure plots the mean best fitness and standard deviation across parameter values, illustrating the sensitivity
trends discussed above.

NOTE: All obtained results are documented at the following link:

https://doi.org/10.5281/zenodo.15809779

6. Conclusion

This study introduced the Sarpa Salpa Optimization Algorithm (SSOA), a novel bio-inspired metaheuristic based on
the behavior of the Sarpa Salpa fish, and compared its performance with the well-established Particle Swarm
Optimization (PSO) algorithm. Experimental evaluations on classical benchmark functions Rastrigin, Griewank,
Sphere, and Ackley across various dimensions demonstrated the superior performance of SSOA, especially in high-
dimensional, multimodal problems.

The SSOA consistently achieved optimal or near-optimal fitness values with a 100% success rate across all tested
functions and dimensions, while PSO’s performance notably declined as problem dimensionality increased.
Statistical analysis using paired t-tests confirmed that the differences in performance between SSOA and PSO are
significant for complex landscapes, indicating the robustness and efficiency of the proposed algorithm.

These results suggest that the Sarpa Salpa Optimization Algorithm is a promising alternative for solving complex
global optimization problems, with potential applications in engineering design, machine learning hyperparameter
tuning, and other fields requiring efficient exploration-exploitation balance.

Furthermore, the sensitivity analysis of key algorithm parameters including alpha, beta, gamma, and inertia weight
(w) showed that SSOA is relatively robust to moderate variations in these settings. However, very low or very high
parameter values can negatively impact convergence speed and solution accuracy, highlighting the importance of
appropriate parameter tuning to achieve optimal performance.
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7. Future Work

Building upon the promising results of the Sarpa Salpa Optimization Algorithm (SSOA), several directions for future
research are proposed to enhance the algorithm's applicability and performance. First, incorporating constraint-
handling techniques would allow SSOA to tackle constrained optimization problems frequently encountered in
engineering and real-world applications (Deb, 2000).

Second, hybridization with local search methods, such as gradient-based optimizers or metaheuristics like Simulated
Annealing, could improve convergence speed and solution refinement (Talbi, 2009).

Third, adaptive parameter control mechanisms may be developed to dynamically balance exploration and
exploitation during the search process, potentially increasing robustness across diverse problem landscapes (Eiben &
Smith, 2015).

Finally, extensive testing on large-scale, multi-objective, and dynamic optimization problems would provide deeper
insight into the strengths and limitations of SSOA in practical scenarios, guiding further algorithmic improvements.
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