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Abstract 
This paper introduces a novel optimization algorithm inspired by the behavior of the Sarpa 

Salpa fish, referred to as SSOA. The algorithm mimics the natural exploration and 

exploitation strategies of Sarpa Salpa, incorporating adaptive mechanisms for improved 

search efficiency in complex multimodal landscapes. Performance evaluation is conducted on 

standard benchmark functions Rastrigin, Griewank, Sphere, and Ackley across multiple 

dimensionalities (2D, 5D, 10D, 20D, and 50D). Statistical analyses over repeated trials show 

that SSOA outperforms the classical Particle Swarm Optimization (PSO) algorithm in terms 

of accuracy, robustness, and success rate, especially in higher-dimensional problems. In 

addition, a sensitivity analysis of key parameters (alpha, beta, gamma, and inertia weight) 

demonstrates the algorithm's resilience to parameter variations, while highlighting that 

extreme parameter values can degrade performance. Despite a moderate increase in 

computational cost, the algorithm demonstrates strong potential for solving challenging 

global optimization problems. 

 

Keywords: Sarpa Salpa-inspired optimization, metaheuristic algorithms, Particle Swarm 

Optimization, benchmark functions, multimodal optimization, global search, high-dimensional 

optimization, statistical evaluation. 

 :الولخص

 ، وٍشُدداس يلَ ددا باسددنSarpa Salpaقددذم هددزٍ الوسقددة البحاَددة  واسصهَددة تحسددَي هسددتوحا  هددي سددلو  سددو ة ت

.SSOA  تحاكٌ الخواسصهَة استشاتَجَات الاست شاف والاستغلال الطبَعَة لسو ةSarpa Salpa  هد  دهد ،

الأداء باسدتخذام دوال ا تبداس آلَات ت َفَدة لتحسدَي كفداء  البحد  فدٌ البَتدات هتعدذد  القودن والوعقدذ . تدن تقَدَن 

أبعداد،  5عبش أبعاد هتعدذد  ثنٌايَدة الأبعداد،   Ackleyو  Sphereو  Griewankو Rastrigin هعَاسٍة هٌ

 SSOA بعذاً(. أظ شت التحلَلات الإحصايَة عبش التجاسب الوت شس  أى  واسصهَة 51بعذاً، و 21أبعاد،  11
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هددي حَدد  الذقددة والوتاًددة وهعددذل الٌجددا ،  (PSO) لتقلَذٍددةتتفددوق علددي  واسصهَددة تحسددَي سددشب الجسددَوات ا

 اصة فٌ الوش لات رات الأبعاد العالَة. بالإضافة يلي رلك، أظ ش تحلَل الحساسَة للوعداهلات الشيَسدَة ثألفدا 

وبَتا وجاهدا وهعاهدل العطالدة( قدذس  الخواسصهَدة علدي هقاوهدة تغَدشات الوعداهلات، هد  الإنداس  يلدي أى القدَن 

للوعاهلات قذ تؤدً يلي تشاج  الأداء. وعلي الشغن هي الضٍاد  الوعتذلدة فدٌ الت لفدة الحسدابَة، تُ  دش القصوى 

 .الخواسصهَة يه اًات قوٍة فٌ حل هش لات التحسَي العالوَة الوعقذ 

 

 واسصهَة تحسَي هستوحا  هي سو ة ساسبا سالبا، الخواسصهَات الوَتاهَوسٍستَة،  واسصهَة الكلواث الذالت: 

سشب الجسَوات، الذوال الا تباسٍة القَاسَة، التحسدَي هتعدذد القودن، البحد  العدالوٌ، التحسدَي عدالٌ الأبعداد، 

 .التقََن الإحصايٌ

1. Introduction 

Optimization algorithms inspired by natural phenomena have attracted significant attention in recent years due to 

their ability to efficiently solve complex global optimization problems that are otherwise difficult for classical 

deterministic methods (Yang, 2014). Among these, bio-inspired metaheuristics that mimic animal behavior stand out 

for their versatility and effectiveness in various engineering and scientific applications (Mirjalili et al., 2016). 

Recent advances have highlighted the increasing relevance of nature-inspired metaheuristics, particularly in 

addressing high-dimensional optimization problems and real-world engineering applications (Fister, Yang, Fister Jr., 

Brest, & Fister, 2023). 

The Sarpa Salpa, a species of fish known for its unique swimming and foraging strategies in complex marine 

environments, provides an interesting biological model for developing novel optimization algorithms. The natural 

behavior of Sarpa Salpa, characterized by adaptive exploration and exploitation of its surroundings, offers valuable 

inspiration for designing search mechanisms that balance diversification and intensification in optimization tasks 

(Kennedy & Eberhart, 1995; Dorigo & Stützle, 2004). 

This paper presents an enhanced Sarpa Salpa Optimization Algorithm (SSOA), which incorporates improved 

adaptive mechanisms to simulate the fish’s natural search behavior more realistically. The algorithm is benchmarked 

against standard multimodal test functions, including Rastrigin, Griewank, Sphere, and Ackley functions, across 

different dimensionalities to evaluate its robustness and scalability. 

Extensive statistical analysis is conducted over multiple independent runs to compare the performance of SSOA with 

the well-known Particle Swarm Optimization (PSO) algorithm (Kennedy & Eberhart, 1995), focusing on metrics 

such as best fitness, mean fitness, standard deviation, success rate, and computational time. The results demonstrate 

that SSOA achieves superior accuracy and reliability, particularly in higher-dimensional optimization problems. 

2. Theoretical Framework:  

Metaheuristic optimization algorithms mimic natural processes to explore and exploit complex search spaces 

efficiently (Yang, 2014). The Sarpa Salpa Optimization Algorithm (SSOA) is inspired by the adaptive foraging and 

swimming behaviors of the Sarpa Salpa fish, which optimize its path to locate food while avoiding predators and 

obstacles in a dynamic marine environment. 

Recent studies have emphasized that fish exhibit highly dynamic and cooperative search strategies, characterized by 

continuous adaptation to environmental changes and information sharing among individuals, making them a rich 

source of inspiration for bio-inspired optimization models (Alvarez, Chen, & Wang, 2024). 

1.2 Mathematical Model of the Sarpa Salpa Optimization Algorithm 

Let the search space be defined in a  -dimensional domain, where each candidate solution (individual fish) is 

represented as a position vector: 

   (               )               
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where   is the population size. 

 

The SSOA updates the position of each individual fish by simulating two main behaviors: 

 Exploration (Searching for Food): 

The fish explore the environment to discover promising regions. The position update rule for exploration is given by: 

  
      

      
    

 

where: 

o   denotes the current iteration, 

o   is an adaptive scaling factor controlling the step size, decreasing over iterations to encourage convergence, 

o   
  it is a stochastic vector representing a random exploratory move, often sampled from a Gaussian 

distribution  (    )  

 Exploitation (Following Optimal Paths): 

Once promising locations are detected, individuals intensify the search near the best solutions found so far: 

  
      

    (     
    

 )      
  

where: 

o      
   is the best solution found by the population up to iteration  , 

o   and    are weighting parameters balancing exploitation and random perturbation. 

 Adaptive Mechanism 

The adaptive parameters       evolve dynamically during iterations to balance exploration and exploitation, 

following a nonlinear decay or control function (Mirjalili et al., 2016): 

 

     (  
 

    
) ,  

where: 

o    is the initial step size, 

o  maxis the maximum number of iterations, 

o   controls the decay rate. 
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2.2 Flowchart 

 
Figure 1: flowchart of SSOA 

3. Comparison to Particle Swarm Optimization (PSO) 

PSO updates particle velocities and positions based on personal and global best positions (Kennedy & Eberhart, 

1995): 

    
         

      (         
 )      (       

 )  

    
        

      
   , 

where: 

o      is velocity of particle iii in dimension  , 

o   Inertia weight, 

o       Acceleration coefficients, 

o       Random numbers in [0,1], 

o      Personal best position, 

o    Global best position. 

SSOA’s main difference is simulating the natural movement patterns of Sarpa Salpa with adaptive step sizes and 

stochastic exploration, allowing potentially better exploration of multimodal landscapes. 
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3.1 Benchmark Test Functions 

Benchmark test functions are critical tools in evaluating and comparing the performance of metaheuristic 

optimization algorithms. They provide controlled environments with known properties and global optima to assess 

convergence speed, solution accuracy, and robustness. In this study, four widely adopted functions were used: 

Rastrigin, Griewank, Ackley, and Sphere. 

 Rastrigin Function 

The Rastrigin function is a highly multimodal, non-convex function with a large number of regularly distributed 

local minima. It is defined as follows: 

 ( )      ∑    
       (    ) 

 

   
, 

where: 

o      
o   is the dimensionality of the search space 

o                 
o The global minimum is located at       with  (  )   . 

 

Properties: 

o Highly multimodal 

o Separable 

o Regular landscape with many local minima 

(Rastrigin, 1974; Yang, 2014) 

 
Figure 2: Rastrgin Function 

 Griewank Function 

The Griewank function combines a sum of squares term with a cosine product term, creating many regularly spaced 

local minima: 

 ( )    
 

    
∑   

  

   
 ∏     (

  

√ 
)

 

   
, 

where: 

o               

o The global optimum is at     , with  (  )   . 

Properties: 

o Multimodal but with fewer local minima than Rastrigin 

o Non-separable 

o Complex landscape 

 

(Griewank, 1981; Surjanovic & Bingham, 2013) 
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Figure 3: Griewank Function 

 Ackley Function 

The Ackley function is characterized by a nearly flat outer region and a large hole at the center: 

 ( )        

(

   √
 

 
∑   

 

 

   
)

     (
 

 
∑    (   )

 

   

)       ( )  

where: 

o                 
o                     
o The global minimum is at     , with  (  )   . 

Properties: 

o Highly multimodal 

o Non-separable 

o Suitable for testing convergence in flat regions 

 

(Ackley, 1987; Yang, 2014) 

 
Figure 4: Ackley Function 
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 Sphere Function 

The Sphere function is a simple unimodal convex function, commonly used as a baseline: 

 ( )  ∑  
 

 

   

  

where: 

o                 
o The global minimum is at     , with  (  )   . 

 

Properties:  

o Unimodal 

o Separable 

o Smooth and convex landscape 

(De Jong, 1975) 
 

 

Figure 4: Sphere Function 

 .4 Results and Statistical Analysis 

This section presents a comprehensive comparison between the proposed Sarpa Salpa Optimization Algorithm 

(SSOA) and the classical Particle Swarm Optimization (PSO) algorithm. Both algorithms were evaluated on four 

benchmark functions: Rastrigin, Griewank, Sphere, and Ackley, over multiple dimensions (2D, 5D, 10D, 20D, and 

50D). Each experiment was repeated five times to ensure reliability and robustness of the results. 

 Performance Metrics 

The performance metrics used for evaluation include: 

o Best Fitness Value: The lowest objective function value found across runs. 

o Mean Fitness Value: Average of best fitness values over five runs. 

o Standard Deviation (STD): Variation of best fitness values. 

o Success Rate (%): Percentage of runs achieving a solution within a small tolerance of the known global 

optimum. 

o Average Execution Time (Seconds): Mean runtime per run. 

4.1 Sarpa Salpa Optimization Algorithm (SSOA) Performance 

Table 1. Performance of SSOA across benchmark functions and dimensions. 

Function Dimension 
Mean 

Fitness 

Std 

Deviation 

Success Rate 

(%) 

Average Time per Run 

(sec) 

Rastrigin 

2D 

0.000000 0.000000 100 2.56 

Griewank 0.000000 0.000000 100 2.03 

Sphere 0.000000 0.000000 100 1.65 

Ackley 0.000000 0.000000 100 2.12 



220 

 

Rastrigin 

5D 

0.000000 0.000000 100 2.26 

Griewank 0.000000 0.000000 100 2.62 

Sphere 0.000000 0.000000 100 1.97 

Ackley 0.000000 0.000000 100 2.68 

Rastrigin 

10D 

0.000000 0.000000 100 2.92 

Griewank 0.000000 0.000000 100 3.20 

Sphere 0.000000 0.000000 100 2.53 

Ackley 0.000000 0.000000 100 3.36 

Rastrigin 

20D 

0.000000 0.000000 100 4.13 

Griewank 0.000000 0.000000 100 4.28 

Sphere 0.000000 0.000000 100 3.71 

Ackley 0.000000 0.000000 100 4.57 

Rastrigin 

50D 

0.000000 0.000000 100 7.37 

Griewank 0.000000 0.000000 100 7.52 

Sphere 0.000000 0.000000 100 6.69 

Ackley 0.000000 0.000000 100 7.92 
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Figure 5: SSOA Convergence Curves for Different Dimensions 

 

Table 1 and Figure 5 show the performance of the proposed SSOA algorithm under the same settings. Main 

findings: 
 

o Outstanding consistency:   
SSOA achieved zero mean fitness and 100% success in every test case, including high-dimensional, 

multimodal functions where PSO struggled. 

 

o Execution time:   
The runtime was higher compared to PSO, ranging from ~2 seconds per run in 2D problems up to ~8 

seconds in 50D problems, reflecting the added computational cost of adaptive mechanisms and more 

sophisticated search dynamics. 

 

4.2 Particle Swarm Optimization (PSO) Performance 

Table 2. Performance of PSO across benchmark functions and dimensions. 
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Function Dim Mean Fitness Std Deviation Success Rate (%) 
Avg Time per Run 

(s) 

Rastrigin 

2 

0.000000 0.000000 100.0 0.38 

Griewank 0.001479 0.002958 100.0 0.50 

Sphere 0.000000 0.000000 100.0 0.21 

Ackley 0.000000 0.000000 100.0 0.64 

Rastrigin 

5 

0.397984 0.487428 60.0 0.48 

Griewank 0.023328 0.004377 0.0 0.52 

Sphere 0.000000 0.000000 100.0 0.21 

Ackley 0.000000 0.000000 100.0 0.65 

Rastrigin 

10 

6.964707 5.449608 0.0 0.39 

Griewank 0.090548 0.063811 0.0 0.63 

Sphere 0.000000 0.000000 100.0 0.22 

Ackley 0.000000 0.000000 100.0 0.65 

Rastrigin 

20 

40.594185 10.851822 0.0 0.40 

Griewank 0.015758 0.012988 40.0 0.53 

Sphere 0.000000 0.000000 100.0 0.33 

Ackley 0.929013 1.271958 60.0 0.66 

Rastrigin 

50 

279.612661 31.994087 0.0 0.45 

Griewank 36.233294 72.280975 40.0 0.57 

Sphere 31.458122 10.485339 0.0 0.25 

Ackley 8.229654 4.430254 0.0 0.82 
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Figure 6: PSO Convergence Curves for Different Dimensions 

 

Table 2 and Figure 6 report the performance of the Particle Swarm Optimization (PSO) algorithm across four 

benchmark functions (Rastrigin, Griewank, Sphere, Ackley) and multiple dimensions (2D, 5D, 10D, 20D, 50D). 

 Key observations: 

o Low-dimensional problems (2D and 5D):  
PSO achieved excellent results, with 100% success rates and mean fitness values of zero or near-zero for 

Sphere and Ackley functions. 

 

o High-dimensional problems (10D-50D):  
The performance degraded significantly. In Rastrigin and Griewank, mean fitness values increased sharply 

(e.g., Rastrigin 50D: ~279.6), and the success rate dropped to 0% in most cases. 

 

o Execution  time:  
PSO was consistently fast, completing each run in approximately 0.2–0.6 seconds, reflecting its 

computational efficiency. 
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So, the tables highlight several clear conclusions: 

 Accuracy: 

o SSOA consistently achieved optimal solutions in all benchmark functions and dimensions. 

o PSO performed well in simpler, low-dimensional problems but its performance deteriorated 

rapidly as problem complexity increased. 

 Robustness: 

o SSOA maintained a 100% success rate across all cases. 

o PSO failed to converge to the global optimum in most higher-dimensional cases. 

 Computational time: 

o PSO was faster but less reliable. 

o SSOA required more time but provided significantly more robust and accurate results. 

The following charts illustrate the differences between the two algorithms SSOA and PSO:  

 
Figure 7: Comparison of Mean Fitness 

The SSOA bars are not visible in this log-scale chart because the algorithm consistently achieved a mean fitness of 

exactly zero across all test functions and dimensions. Since the logarithm of zero is undefined, these values could not 

be plotted. This indicates that SSOA significantly outperformed PSO by consistently reaching the optimal solutions, 

while PSO exhibited higher mean fitness values, especially in higher-dimensional problems. 

 
 Figure 8: Comparison of Success Rates  
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Figure 8 compares the success rates of PSO and SSOA algorithms across various benchmark functions (Griewank, 

Sphere, Ackley, Rastrigin) in different dimensions (1D-5D). SSOA shows consistently higher success rates than PSO 

in most cases, demonstrating its superior optimization performance, particularly in higher-dimensional problems. 

 

 
Figure 9: Comparison of Computation Time 

 

In figure 9, the superior execution speed of PSO is primarily due to its simple mathematical updates, as it relies only 

on lightweight velocity and position equations without heavy distributions or complex computations. PSO updates 

particle velocity using     
         

      (         
 )      (       

 )  and position by     
        

      
   , 

which are computationally efficient. In contrast, SSOA incorporates Gaussian random exploration vectors, Levy 

flights requiring special random sampling and additional calculations, and continuous dynamic adaptation of 

parameters (     ) during each iteration. Moreover, SSOA often uses larger populations where each agent performs 

exploration, exploitation, boundary handling, and final-phase perturbation, adding extra computational load. 

Therefore, while PSO achieves faster runtimes due to its simplicity, SSOA is designed to be more robust and precise, 

which explains its consistently superior solution quality at the cost of longer execution times. 

4.3 Statistical Significance 

A paired two-tailed t-test was performed on the best fitness values obtained from the 5 runs for each function and 

dimension, testing the null hypothesis that the mean fitness difference between SSOA and PSO is zero. The results 

consistently show  -values < 0.01 for high-dimensional Rastrigin and Griewank functions, confirming that SSOA 

significantly outperforms PSO in these cases. For low-dimensional problems, both algorithms perform equivalently 

well with no statistically significant difference. 

 

.5  Sensitivity Analysis 

In this section, we analyze the sensitivity of the proposed SSOA algorithm to key parameters: alpha ( ), beta ( ), 

gamma ( ), and inertia weight ( These parameters control the balance between exploration and exploitation, the 

magnitude of Lévy flights, and the overall agent movement dynamics, which significantly impact the convergence 

behavior and solution quality. 

The sensitivity analysis was conducted on the Sphere benchmark function in a 10-dimensional search space with 5 

independent runs per parameter setting. Each parameter was varied systematically within a predefined range while 

keeping the others fixed at their default values. Performance metrics recorded include the mean best fitness value, 

standard deviation, success rate (percentage of runs reaching a predefined fitness threshold), and average execution 

time. Table 1 summarizes the sensitivity analysis outcomes for each parameter. 
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Table 3: Summarizes the sensitivity analysis outcomes for each parameter 

Parameter Value Mean Fitness Std Deviation Parameter Value Mean Fitness Std Deviation 

Alpha (α) 

0.10 0.000001 0.000001 

Beta (β) 

0.10 0.000000 0.000000 

0.20 0.000023 0.000014 0.20 0.000001 0.000000 

0.30 0.000837 0.000840 0.30 0.000380 0.000155 

0.40 0.013298 0.010756 0.40 0.013140 0.010099 

0.50 0.114943 0.064458 0.50 0.252575 0.102814 

0.60 2.236980 0.631674 0.60 9.175988 2.101092 

0.70 1.022465 0.098662 0.70 10.457567 1.466743 

0.80 0.432913 0.103370 0.80 8.712870 2.146127 

0.90 0.048410 0.010998 

Weight (w) 

0.10 21.144935 11.886575 

Gamma (γ) 
 

 

0.10 0.001206 0.000667 0.20 7.335594 8.549152 

0.20 0.003647 0.002136 0.30 0.045829 0.027894 

0.30 0.007956 0.005897 0.40 0.000017 0.000023 

0.40 0.005789 0.004783 0.50 0.000000 0.000000 

0.50 0.019786 0.011781 0.60 0.000014 0.000015 

0.60 0.009595 0.003000 0.70 0.014589 0.005823 

0.70 0.017598 0.010620 0.80 0.597347 0.229068 

0.80 0.026746 0.018396 0.90 16.378510 4.979805 

0.90 0.031766 0.025611 
1.00 60.405923 4.132249 

1.00 0.017147 0.010152 

 

 Discussion 

o ALPHA (Α): Low values of α (0.1 to 0.3) result in superior mean fitness and low variance, indicating 

effective exploration with convergence to optimal regions. Values above 0.5 degrade performance, likely 

due to overly aggressive step sizes destabilizing the search (Mirjalili, 2016). 

o BETA (Β): Optimal performance occurs for β in the range 0.1–0.3. Larger β values increase variance and 

reduce success rates, suggesting that moderate Lévy flight intensity is crucial for balancing exploration-

exploitation (Yang, 2014). 

o GAMMA (Γ): The algorithm shows relative insensitivity to γ variations, maintaining stable mean fitness 

and success rates. This suggests γ fine-tunes step randomness without drastically affecting convergence. 

o WEIGHT (W): The inertia weight critically affects convergence; intermediate values (0.4 to 0.6) balance 

momentum and adaptability. Values too low or too high hinder convergence, corroborating findings in PSO 

literature (Shi & Eberhart, 1998). 

 



227 

 

 
Figure 10: Sensitivity Analysis of Control Parameters on Optimization Performance 

Each figure plots the mean best fitness and standard deviation across parameter values, illustrating the sensitivity 

trends discussed above. 

NOTE: All obtained results are documented at the following link:  

https://doi.org/10.5281/zenodo.15809779 

.6  Conclusion 

This study introduced the Sarpa Salpa Optimization Algorithm (SSOA), a novel bio-inspired metaheuristic based on 

the behavior of the Sarpa Salpa fish, and compared its performance with the well-established Particle Swarm 

Optimization (PSO) algorithm. Experimental evaluations on classical benchmark functions Rastrigin, Griewank, 

Sphere, and Ackley across various dimensions demonstrated the superior performance of SSOA, especially in high-

dimensional, multimodal problems. 

The SSOA consistently achieved optimal or near-optimal fitness values with a 100% success rate across all tested 

functions and dimensions, while PSO’s performance notably declined as problem dimensionality increased. 

Statistical analysis using paired  -tests confirmed that the differences in performance between SSOA and PSO are 

significant for complex landscapes, indicating the robustness and efficiency of the proposed algorithm. 

These results suggest that the Sarpa Salpa Optimization Algorithm is a promising alternative for solving complex 

global optimization problems, with potential applications in engineering design, machine learning hyperparameter 

tuning, and other fields requiring efficient exploration-exploitation balance. 

Furthermore, the sensitivity analysis of key algorithm parameters including alpha, beta, gamma, and inertia weight 

(w) showed that SSOA is relatively robust to moderate variations in these settings. However, very low or very high 

parameter values can negatively impact convergence speed and solution accuracy, highlighting the importance of 

appropriate parameter tuning to achieve optimal performance. 

https://doi.org/10.5281/zenodo.15809779
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7. Future Work 

Building upon the promising results of the Sarpa Salpa Optimization Algorithm (SSOA), several directions for future 

research are proposed to enhance the algorithm's applicability and performance. First, incorporating constraint-

handling techniques would allow SSOA to tackle constrained optimization problems frequently encountered in 

engineering and real-world applications (Deb, 2000). 

Second, hybridization with local search methods, such as gradient-based optimizers or metaheuristics like Simulated 

Annealing, could improve convergence speed and solution refinement (Talbi, 2009). 

Third, adaptive parameter control mechanisms may be developed to dynamically balance exploration and 

exploitation during the search process, potentially increasing robustness across diverse problem landscapes (Eiben & 

Smith, 2015). 

Finally, extensive testing on large-scale, multi-objective, and dynamic optimization problems would provide deeper 

insight into the strengths and limitations of SSOA in practical scenarios, guiding further algorithmic improvements. 
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