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Abstract

This paper introduces the notion of generalized hyperconnected sets in topological spaces
using Levine’s concept of  generalized closed sets. We define generalized hyperconnected
sets and generalized hyperconnected components and study their fundamental properties.
Furthermore, we provide necessary conditions for a topological space to be generalized
hyperconnected. The relationship between this type of connectedness and other types is also
presented. Several results concerning these new concepts are obtained and proven.

Keywords: Hyper connected set, g-closed set, gh-component, g-hyperconnected set,
g-open set, T1 space.
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Introduction

The notion of generalized closed sets in topological spaces (or g-closed) was introduced and
studied by Levine (1970). Many topological concepts related to g-closed sets have been studied
extensively by many topologists. Balachandran et al. (1991) defined and studied generalized
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continuous maps, while Dunham (1982) introduced the notion of a g-closure operator. Several g-
topological concepts have been defined and developed (see, for instance, Caldas et al., 2007; Cao
et al., 2002; Dunham, 1977). The concept of hyperconnected spaces was introduced by Steen and
Seebach (1970), and various related concepts have been investigated by many researchers (see
for instance, Chutiman & Boonpok, 2023; Sasikala & Deepa, 2021).

The purpose of this paper is to introduce and investigate the notion of g-hyperconnected sets in
topological space. We study various properties of g-hyperconnected sets and prove some basic
results. Furthermore, we introduce and study the notion of gh-components. Finally, we provide
necessary conditions for g-hyperconnected topological spaces and investigate some of their
properties.

2. Preliminaries

Definition 1. A subset F of a topological space X is said to be generalized closed (briefly, g-
closed) if F € V whenever V is open and F € V. The complement of a g-closed set is called
generalized open (briefly, g-open) (Levine, 1970).

The class of all g-closed (resp., g-open) sets will be denoted by GF (X) (resp., GO(X)).
Observation 1. (1) Every closed set is g-closed (Levine, 1970).

(2) If F;and F, are g-closed sets, then F; U F, is g-closed, while F; n F, need not be g-closed
(Levine, 1970).

Definition 2. A topological space is T: if each g-closed set is closed (Levine, 1970).
2
Theorem 1. Every T; space is T1 and every T1 space is T, (Levine, 1970).
2 2
Theorem 2. A topological space is T: if and only if each singleton is either closed or open
2

(Dunham, 1977).

Theorem 3. For each y € X, either {y} is closed or the complement of {y} is g-closed
(Dunham, 1982).

Definition 3. The g-closure B9 of a subset B of X is the intersection of all g-closed sets that
contains B (Dunham, 1982).

Definition 4. A topological space X is said to be hyperconnected (resp., ultraconnected) if X
cannot be written as the union of two proper closed (resp., open) sets (Steen & Seebach, 1970).

Definition 5. A topological space is said to be g-connected if it cannot be written as a disjoint
union of two nonempty g-open sets (Balachandran et al., 1991).
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Definition 6. A function h: X — Y is said to be g-irresolute (Balachandran et al., 1991) (resp.,
g-continuous (Balachandran et al., 1991), contra g-continuous (Caldas et al., 2007)) if the
inverse image of every g-closed (resp., closed, open) set inY is g-closed (resp., g-closed, g-
closed) in X.

3. g-Hyperconnected Sets in Topological Spaces

In this section, we introduce and investigate the concept of g-hyperconnected sets in topological
spaces.

Definition 7. A subset A of X is said to be g-hyperconnected if A € F or A € G whenever
AC FUG, F,G are g-closed sets.

Example 1. Let X =N with the cofinite topology, then any infinite subset of X is g -
hyperconnected.

Theorem 4. Let B be a g-hypeconnected set in X and A € B. If Ais g-open in X, then Ais g-
hyperconnected.

Proof. Suppose, for a contradiction, that A is not g-hyperconnected in X, so there are g-closed
sets Fand G suchthat AC FUGandAZ F, A € G. Define H = (X\A) UG, so H is g-closed
since both X\A and G are g -closed. Observe that BS FUH and B £ F, B £ H, which
contradicts the assumption that B is a g-hyperconnected set. Therefore, A isa g-hyperconnected
setin X.

Corollary 1. The interior of a g-hyperconnected set is also g-hyperconnected.

Observation 2. If A is a subset of a g-hyperconnected set B and A is g-closed in X, then A need
not be g-hyperconnected. To illustrate this, consider the following example.

Example 2. Let 7, be the particular point topology on a set X, where |X| > 2, then X is g-
hyperconnected. If A € X, |A| > 1,and p & A, then Ais g-closed but not g-hyperconnected.

The following theorem shows that a g-hyperconnected set has a g-hyperconnected g-closure.
Theorem 5. If A is a g-hyperconnected set in X, then A9 is g-hyperconnected.

Proof. Suppose, for a contradiction, that A9 is not g-hyperconnected, so there are g-closed sets
F,Gsuch that A9 S FUG, and A9 € F, A9 & G. Since A € A9, which implies that A € F U
G, we have two cases:

(1) IfAZ Fand A € G, then A is not g-hyperconnected, which is a contradiction.
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(2) If ACF (the case A C G is similar), then by the definition of the g-closure and the
assumption that F is g-closed, we have A9 € F, which is a contradiction of our assumption that
AIEF.

Therefore, from cases (1) and (2), we conclude that A9 is g-hyperconnected in X.

Observation 3. If A;, A, € X are g-hyperconnected sets and A; N A, # ¢, it is not true in general
that A; U A, is g-hyperconnected; this is illustrated by the following example.

Example 3. Let X ={ab,d} and 71 ={¢ X {a},{b}{ab}} , so we have
GF(X) ={¢,X,{b,d},{a,d},{d}}. If A, ={a,d} and A, ={b,d}, then A; N A, # ¢. In this
case, each of A; and A, is g-hyperconnected, but A; U A, = X is not g-hyperconnected.

The following theorem describes the images of g-hyperconnected sets under certain types of
functions.

Theorem 6. Let h: X — Y be a surjection and let B be g-hyperconnected in X.
(1) If his g-irresolute then h(B) is g-hyperconnected inY.
(2) If his g-continuous then h(B) is hyperconnectedinY.

Proof. (1) Suppose, for a contradiction, that h(B) is not g-hyperconnected in Y, so h(B) € F U
G for some g-closed sets F and G, and h(B) & F, h(B) & G. Now, both h~*(F) and h~*(G)
are g-closed in X since h is g-irresolute. It follows that B € h™1(F)u h™1(G) with B &
h~Y(F) and B ¢ h™1(G), so B is not g-hyperconnected in X, which is a contradiction.

(2) The proof of this statement follows along the same lines as in (1).
Now, we give the definition of gh-components in a topological space.

Definition 8. A g-hyperconnected component (briefly, gh-component) in X is defined to be a
maximal g-hyperconnected set in X.

Example 4. Let (X, t,) be an excluded point space, then for each x € X\{p}, {p,x} is a gh-
component in X.

Observation 4. (1) If C and C* are gh-components, then it is not necessarily true that C N C* =
¢. In Example 4, the intersection of any two gh-components is {p}.

(2) The union of all gh-components in X is X.

A gh -component is not necessarily closed, but the following result shows that each gh -
component in a space is equal to its g-closure.
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Theorem 7. If C is a gh-component in X then C = €Y.

Proof. Since C is a g-hyperconnected set, it follows from Theorem 5 that C9 is also g-
hyperconnected in X. By the definition of the g-closure we have C € C9. Since C is a gh-
component, i.e., a maximal g-hyperconnected set, it follows that C9 < C. Therefore, C = C9.

Theorem 8. If h: X — Y is a g-irresolute surjection and if C is a gh-component in X then h(C)
must lie in a gh-component in Y.

Proof. Since C is g-hyperconnected in X, then, from Theorem 6, we have h(C) is also g-
hyperconnected in Y. It follows immediately that h(C) < C* for some gh-component C*inY.

4. g-Hyperconnected Topological Spaces

Definition 9. X is said to be a g-hyperconnected space if X cannot be written as the union of two
proper g-closed subsets of X. Equivalently, X is g-hyperconnected if any two nonempty g-open
sets intersect.

Obviously, any g-hyperconnected space is hyperconnected, but the converse is generally false as
shown by:

Example 5. Let X be an indiscrete space with |X| > 2, so GF(X) is the power set of X. Hence, X
is hyperconnected but not g-hyperconnected.

The implications between g-hyperconnectedness and different types of connectedness can be
summarized by:

g-hyperconnected space = hyperconnected space
u u

g-connected space = connected space

Observation 5. It is known that if 7, € 7, and (X, t,) is hyperconnected (resp., connected), then
(X, t,) is also hyperconnected (resp., connected). However, if (X, t,) is g-hyperconnected then
(X, t,) need not be g-hyperconnected. For example, if (X,t,) is any g-hyperconnected space
and (X, t,) is the indiscrete space, then GF,(X) is the power set of X, so (X,t;) is not g-
hyperconnected.

The following theorem provides necessary (but not sufficient) conditions that a space must
satisfy to be g-hyperconnected.
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Theorem 9. If X is a g-hyperconnected space, then either X is a Ty, space or X satisfies the

following condition: there exists y € X such that {y} is neither closed nor open, and for each
x # y, {x}is closed and not open.

Proof. Suppose X is neither a T; ,, space nor satisfies the condition above. This assumption,
together with Theorem 2, implies that we have exactly the following possible cases:

(1) There are x,y € X, x # y, such that each of {x} and {y} is neither closed nor open. Hence,
from Theorem 3, we have X\{x} and X\{y} are g-closed sets. Therefore, since X = X\{x} U
X\{y}, X is not g-hyperconnected.

(2) There are x,y € X, x # y, such that {y} is open, and {x} is neither closed nor open. Thus,
X\{y}is a closed set, and from Theorem 3, X\{x} is g-closed. Since X = X\{x} U X\{y}, X is
not g-hyperconnected.

Therefore, from cases (1) and (2), the proof is complete.

Observation 6. The converse of Theorem 9 is generally false; we illustrate this by the following
examples.

Example 6. R with the usual topology is a Ty /, space, but it is not g-hyperconnected.
Example 7. Let X = N and let 7 be the topology defined as follows
T = {¢, X\C: C is finite and either 1 & C or {1,2} < C },

so each singleton in X is closed and not open except the singleton {1}, which is neither closed
nor open. According to Theorem 3, the set X\{1} is g-closed in X. Therefore, since X =
(X\{1}) u {1,2}, X is not g-hyperconnected.

From Theorem 1 and Theorem 9, we have the following two corollaries.

Corollary 2. If X isa T, /, space, then X is hyperconnected if and only if X is g-hyperconnected.
Corollary 3. If X is a g-hyperconnected space, then:

(1) X isa T, space.

(2) Any two distinct points in X cannot be separated by disjoint g-open sets, so X is not a
Hausdorff space. Moreover, X is neither a regular space nor a normal space.

(3) No g-continuous function h: X — {0,1} is surjective, where {0,1} is the discrete space.
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Observation 7. Let A € X, and suppose that (4,t4) is g -hyperconnected as a topological
subspace of X, then A need not be g-hyperconnected as a subset of X. This can be illustrated by
the following example.

Example 8. Let N be equipped with the cofinite topology, Y = {0,1} be the indiscrete space, and
X = N x Y be the product space (also known as the double-pointed cofinite space) (Steen &
Seebach, 1970). If A = N x {0}, then the subspace (4,t,) has the cofinite topology and is
therefore g-hyperconnected. However, A is not g-hyperconnected as a subset of X since, from
Theorem 3, X\{(y,0)} is g-closed for eachy € N; so A € X\{(a,0)} U X\{(b,0)} for some
distinct pointsa,b € N,and A € X\{(a,0)}, A € X\{(b,0)}.

Theorem 6 showed that g-hyperconnectedness is preserved under g-irresolute surjections. Now,
we consider a different class of functions and obtain the following result.

Theorem 10. Let f: X — Y be a contra g-continuous surjection. If X is g-hyperconnected, then Y
is ultraconnected.

Proof. If Y is not ultraconnected, then Y = U U W for some proper open sets U,V; so X =
YUt w). But f71(U), f~1(W) are g-closed in X since f is contra g-continuous, so X
is not g-hyperconnected.

5. Conclusion

In this research, the concept of generalized hyperconnected sets was introduced and studied
using g-open and g-closed sets. Other forms of hyperconnectedness can be investigated by using
different types of generalized open sets, such as pre-g-open sets and semi-g-open sets.

Moreover, this concept can also be extended to other branches of topology, such as soft topology.

Although this study has focused on the purely theoretical aspects of general topology, it is
important to note that topological concepts have also been applied in various practical fields such
as data analysis and decision-making problems (see, for example, Patel & Duraphe, 2024; Chazal
& Michel, 2021). Applying generalized forms of connectedness in such fields is likely to be
useful for understanding the relationships and connectivity among specific elements within a
system, and it can lead to valuable results and improved decision-making processes. Future
research related to generalized hyperconnectedness could be pursued in this direction and other
practical fields.
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