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Abstract: In this paper, A cubic B-spline collocation method is proposed to solve one dimensional
anomalous sub-diffusion equation. The fractional derivative is estimated by using right shifted
Grunwald-Letnikov formula of order m e (0,1). Numerical results are presented to confirm the

feasibility and validity of this scheme.
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Introduction

Paper must Diffusion equations are partial
differential equations which model the
diffusion and thermodynamic phenomena and
describe the spread of particles (ions,
molecules, etc.) diffusion not described by
normal diffusion in the long time limit has
become known as anomalous (unnatural) [1].
Fractional partial differential equations can be
thought as generalizations of classical partial
differential equations, which can give a better
description of the complex phenomena such as
signal processing, systems identification,
control and non-Brownian motion [2] or so
called levy motion which is a generalization of
Brownian motion [3]. A comprehensive
background on this topic can be found in
books by [4] and [5].

In this article, a numerical scheme is
constructed to obtain approximate solutions of
the one-dimensional anomalous sub-diffusion
equation. The Grinwald-Letnikov formula is
applied to treat the fractional temporal
derivative, while the cubic B-spline (CBS) is
used to discretize the spatial derivative.
Consider the following model of anomalous

sub-diffusion equation:

and the boundary conditions
u(0,t)=g,(t), u(Lt)=g,(t), te[0, T], 3

where u(x,t) is a concentration of a quantity
such as mass, energy, etc., D is the diffusion

coefficient (or diffusivity), f; §;, §, and {; are

known functions. 08%u/at® denotes the
Riemann-Liouville fractional derivative. We

consider the case when O<a<l.

Definition 1.1 The fractional derivative Dta of

f(t) can be defined by Riemann-Liouville
formula as [6]

" d 1 ¢ f()d:
D f(t)=— a<l,
DT dt[l“(l—a)j" (t—z)“] Prast

(4

where T'(.) is the Gamma function and
0<t<T . The above derivative is related to the

2%u(x,t azu X, t Riemann-Liouville fractional integral, which is
6t(a ) =D 652 )+ f (x,t), (x,t) € (0, 1)><(O,T], defined as
" 1 t f()ds
ol f ) =——] —, 0<a<l, (5)
(1) ()™ (t-1)
Where D (1 f(t) = f(t).
with the initial condition
u(x,0)=g,(x), xe[01], (2)
SNCLibya-2021 1


mailto:faoziya_sh@yahoo.com

Synthesis, Spectroscopic, Thermal Studies of Nickel(Il)and ....................... Ali et dl.

Definition 1.2 The right-shifted Grinwald-
Letnikov formula of function fwith respect to
independent variable tis defined as [7]

n+1

Oq%ayr%zywa—w—nﬂ+ou) (7)
T k=0

where 7 = At | a)(()a) =1 and

o a+l .,
O =A== el

The coefficients a)&a) are the coefficients of the
power series of the generating function

@(Z,) = (1—2)” and are also the coefficients

of the two-point backward difference
approximation of the first order derivative. The

generating function w(z o) with 0 <<a <1
can be written as a power series of the form

k—a-1

(1-2) = Z:o[ ) ]zk = Zfzowk(”)zk (8)

Cubic B-spline functions

First, we introduce a uniform grid of mesh
points (Xi,tn) with x =ih,i=0,1...,M and
t =nt,n=0,1...,N , where M and N are

positive integers, h=1/M is the spatial step

size in the xdirectionand 7=T /N is the time

step size in the t direction. The notations Uin
and fin are used for the exact values of uand

f at the points (Xi ot ) . An approximation U to

the exact solution ucan be expressed in terms
of the cubic B-spline collocation approach as
(8l

u(xt)=3" c (1)B (x), 9)

where C, (t) are unknown control points and

B, (X) are CBS functions defined as

(x=%_)" Xe[% %]

. h3+3hZ(X7XH)+3h(X7XH)Z73(X7XH)3, X€[X_p %]

B (X)*g h® +3h2 (.., —X)+ 30 (X 1~ X)° =3(%, — %), Xe[X %]
(% *X)Sx Xe[X_p X 4]

0, otherwise.

The value of Bi(X), B(x) and B(x) at mesh
point X are represented in Table 1.
Table 1: The value of Bi(X), Bi'(x) and Bi'(x) at

mesh point X .

X X X. X X

i-2 i-1 i i+1 i+2
B(x) o 1/6 4/6 1/6 0
B(x) o 1/2h 0 -1/2h 0
B(x) © 1/h> 2/h2  Ym 0

The set of B-spline functions

{B,(x),B,(x),....B, (x)} is defined over [a,b].
Therefore, an approximation solution Uin at the

point (Xi,tn)over the subinterval [Xi,XM] is

given as

n i+1 n
u' =3 CJB, (x) (10)
where i =1,2,...,M —1. The approximated
values of uand 8°u/ox° are computed in term

of the control points CJn as:

u' = %(ci”l +4C’ +C!) (11)
and

, 0
‘ sz = h_]-z(cirll - 2Cin + Cin+1) (12)

Cubic B-spline collocation method for
solving anomalous sub-diffusion equation
In this section, the CBS collocation method is
constructed for anomalous sub-diffusion
equation. The time fractional term of equation
(1) is treated by using right shifted Grinwald-
Letnikov formula (7) while its second spatial

derivatives is replaced by applying the
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approximation formula (12), taking into the
consideration that the estimation of truncation

errors of this scheme are neglected. We set

1w , .. D& .o

— U =——| + ", 1=12,..,M -1,
T (& '

n=12,...,N (13)

Substitute equation (11) and (12) into equation
(1), yields

a n n n n a n-k n-k n-k
o (C,+4C"+C! )+ 3" o (C1f +4C +C )

=6r(C/,-2C" +C} )+6:°f", i=12,...,M -1,

n=12,....,N (14)

where r=Dzr” /h2 is the fractional diffusion
number. Simplifying the above equation, we
obtain

(e —6r)C!, +4(w; +3r)C +(w) —6r)C/,

=60 1" =Y o (C) +4CT" +CY), =12, M -1

i+l

n=12,...,N (15)
The system in (15) has M-1 linear equations
involving M+1 unknowns. The two additional
equations can be obtained from the boundary
conditions of equation (1).

Since the equation (10) is assumed to be an
approximate solution for anomalous sub-
diffusion equation (1) then from the boundary
conditions (3) we can write

U

1 a 1 .
u=y, CB(x)=g,(1). 5—” =Y, CB(x)=0. (1)
: y !

0

n
M+1

2

N M ou e

uM:zszilchj(x):gs(t),& :ZFMACiBj(x):O. (17)
M

Hence, this will lead to the following linear

system of (M+1) -equations and (M+1)

unknowns:

AC"=b, i=12,...M-1n=12.. N (18

o —6r 4w +3r) w —6r

o -6r 4w +3r) w -6r

1 2

(M+1)x(M+1)
The matrix A is tri-diagonally strictly

dominant and guaranteed that the solution of
the system is unique.

The vector Q for n=12,...,N is in the form

6 f - Za) (¢ +ac+c)

k=2
Il

6t - Za} (¢ +4c” )

6 f - Za) (¢ +ac” +c)

Note that, the value of the coefficients

cre e, et for k=1,2,..,N are given

0 1 " M

from the initial value, at time level n. After
calculating the coefficients C'(i=0,1..,M,
and 1=12,..,N)the approximate values

u'(i=12,..,M-1 and i=12..,N) is

determined by using the formula (10) to finally

obtain the CBS approximation.

Numerical Experiments

In this section, the proposed scheme will be
tested to confirm the performance and the
effectiveness of the present scheme. The
numerical results are carried out using
Mathematica wolfram 8.

Example 1. Let us consider the equation from
reference [9]

6au(x,t) B o%u (x,t) 2™t

o - 2 + -
ot OX r -
where C_n = [Cg,Cl” yeeos C,?A ]T . The matrix A (3-0) (19)
in (18) is defined as
with the initial condition
u(x,0)=0, xe[0,], (20)
and the boundary conditions
ICSELibya-2021 3
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u(0t)=t> u(Lt)=et®, tef0, T], (21)
The exact solution of equation (19)-(21) is
u(xt)=t’" (22)

We choose «=0.5. The numerical scheme
discussed in this paper for solving the above
example is implemented and its solution is
compared with the exact solution. The
computational results of Example 1 are

illustrated in Table 2 along with the relative

errors at t=6.25x10"°, r=1.25x10" and
h=0.1.

Table 22: Relative errors of the scheme at

t=6.25x10", 7 =1.25x10"° and h=0.1.

X Approx. soln. Exact soln. Errors
0.1 4.50256E-9 4.31707E-9 4.29049E-2
0.2 5.19015E9 4.77110E-9 8.78295E-2
0.3 5.79088E-9 5.27289E-9 9.82365E-2
0.4 6.41295E9 5.82744E-9 1.00475E-1
0.5 7.08946E-9 6.44032E-9 1.00793E-1
0.6 7.83142E9 7.11765E-9 1.00282E-1
0.7 8.63749E-9 7.86622E-9 9.80476E-2
0.8 9.47852E9 8.69352E-9 9.02977E-2
0.9 1.02425E-8 9.60782E-9 6.60633E-2

The comparison between the results of the

CBS collocation method and the exact solution

is plotted in Fig. 1 at t=625x10", 7=1.25x10"°
and h=0.1.

zixt)

1.x1078 | CES collocation Solution ,_.»-’-___.:
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o2 o
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x

Fig. 1: Comparison between the results of CBS
collocation method and exact solution at

t=6.25x10"°, 7 =1.25x10"° and h=0.1.

From Fig. 1, we can observe that the numerical
solutions of the CBS collocation method are
close to the exact solutions. In Fig.2 the
relative errors of the numerical CBS collocation

method are presented at

t=6.25x10", 7=1.25x10"° and h=0.1.
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Fig. 2: The relative errors of the scheme at

t=6.25x10"°, 7 =1.25x10"° and h=0.1.

Conclusion

In this paper, a numerical scheme based on
CBS was presented for solving anomalous sub-
diffusion equation. The time fractional
derivative was estimated via Grlinwald-
Letnikov formula while the spatial derivative
was utilized using the CBS approximation. The
proposed algorithm was tested by a numerical
example, which showed that the scheme is
admissible, straightforward and produced
reasonable results.
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Abbreviations and Acronyms

CBS (Cubic B-spline).
Approx. (Approximate)
Soln. (Solution)
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