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Abstract
In this work, artificial intelligence-based approaches were applied to predict the electrical conductivity for
organic-inorganic hybrid compounds, namely tritetrapropylammoniumdodeca chlorobismuthate(lll)
[(CsH;)sNI3BisCly, and bis (4-acetylaniline) tetrachlorocadmate [C8H10NOJ2[CdCI4] with only the
knowledge of the system temperature and frequency. The suggested machine learning methods are
trained, tested, and validated using experimental datasets. These datasets were used as inputs to
different machine learning algorithms; these implemented algorithms are artificial neural network-scaled
conjugate gradient (ANN-SCG), artificial neural network—gradient descent (ANN-GD), and decision tree.
In particular, all ANN models were optimised by adjusting the hyperparameters in order to produce a
superior neural network architecture, which provides the lowest value of the gradient error. Upon
comparison, it was found that all ANN models showed better accuracy and significant precision in
demonstrating nonlinear relationships with the electrical conductivity dataset, leading to a better
prediction of the simulated electrical conductivity with more than 99% accuracy for the presented data
sets. The decision tree model could not predict the electrical conductivity with acceptable accuracy in
terms of high RMSEs and low correlation coefficients. Based on the obtained results, it suggested that
ANNs were quite efficient techniques for predicting nonlinear and complicated correlations between
independent variables and the response parameter.
Keywords: Artificial Neural Network (ANN), Artificial-intelligence, Decision tree, Electrical conductivity,
Modelling, Organic—inorganic compounds.
INTRODUCTION
Over the past few years, a heterostructure of organic—inorganic materials in one compound has
attracted increasing attention due to their outstanding structural, electronic, optical, thermal,
magnetic, and catalytic properties. In general, the properties of these materials can be
controlled to fit a specific application as they link strongly to their structural variations under
several synthesis process parameters such as temperature and chemical composition. Organic
materials have several p—type semiconductors that can be fabricated by cost-effective growth
methods [1, 2, 3]. In particular, these materials have superior light absorption, making them a
great candidate for solar cells, photodetectors, and light-emitting diodes (LEDs) [4, 5, 6]. Even
though organic materials can provide high fluorescence capacity, broad polarizability, and

structural diversity, they yet undergo some challenges, such as poor carrier mobility, low
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thermodynamic stability, disorganized growth on some traditional substrates such as SiO, and
less carrier injection, which still needs to be addressed [7, 8, 9]. Therefore, the focus of
scientific research is to combine organic and inorganic heterostructures in one product to
enhance the current multifunctional devices and broaden their efficiencies by exploiting the
excellent properties of both materials. Thus, inorganic materials with significant carrier mobility
and ultra-flatness dangling bond-free interface can perform as promising substrates to
synthesize higher—quality organic materials with sharp—edged interfaces, which offer excellent
charge transportation pathways for producing high-efficiency electronic and optoelectronic
devices [1(]. Besides, organic materials as large tunable light absorbers can enhance the
efficiency of 2-dimensional transition metal dichalcogenides (TMDCs) based photodetectors by
expanding their spectral detectivity level with large responsivity and ultrafast charge carrier
dissociation [11, 12, 13]. In addition, organic materials can serve as a superior alternative for
solar cell applications by boosting carrier mobility for FETs [14, 15], accelerating charge carrier
dissociation and slowing down reconnection of organic—inorganic heterostructure [16, 17].
Therefore, organic—inorganic hybrid compounds have paved the way for a broad spectrum of
novel applications in optoelectronics [18], p—n junctions [19], catalysis [2(], photovoltaics [21],
and neuromorphic computing devices [22]. It reported that the electrical characteristics of most
organic—inorganic hybrid compounds can be studied by evaluating their electrical conductivity,
which is mostly utilized to understand the electrical conduction behaviour of solid—state
materials [23]. Therefore, this work aims to apply several predictive algorithms, namely, SCG-
ANN, GD-ANN, and decision tree, to predict the electrical conductivity of two different organic-
inorganic hybrid compounds, which are [(C3H;)4N]3BisClj; and [C8H10NO]2[CdCI4]. In addition,
the performance and accuracy of all proposed models were validated as anticipation
approaches through analytical methodology, and the connections between the input and output
parameters were confirmed.

Artificial intelligence—based models

In general, artificial intelligence—based models are innovative algorithms that analyse datasets
with accuracy, determine complicated patterns, and enable the system to produce sensible
decisions. These sophisticated artificial intelligence algorithms perform according to a concept of
machine learning and are designed to simulate human brain intelligence. They learn from
profound training datasets to build their insight and predictive potencies. In addition, it reported
that artificial intelligence techniques show better performance compared to conventional

statistics for modelling complex nonlinear relationships between input and output datasets and
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providing excellent prediction [24, 25]. One of the most used models is deep artificial neural
networks (DANNs), which is considered a powerful method inspired by biological neural
networks for solving problems such as function approximation, regression analysis, time series
forecasting, classification analysis, and identification patterns in datasets, decision making, and
data processing [26]. Compared to the most typical statistics, ANNs have shown various
advantages, as they can handle several sorts of data, e.g., continuous, binomial, and discrete.
Besides, they can develop complicated models without the need to previously know the
functional dependency between several attributes, therefore, they can discover appropriate
interconnections in the dataset. Furthermore, no specific experimental arrangement and a
particular background are needed to apply ANNSs; hence, they are easy to use and cost-
effective techniques with fewer experimental runs for modelling procedures to produce the
optimum findings [27, 28].

In this work, multi-layer perceptron ANNs are applied for the following causes first, they enable
the artificial network to build parametrical nonlinear relationships of the input variables, as the
output represents a nonlinear function of a linear combination of the neuron outputs in the
hidden layer which themselves represent nonlinear functions of linear combinations of the input
variables. Secondly, depending on the appealed response, the multi-layer perceptron ANNs
automatically neglect some irrelevant factors by allocating zero or very small weights to these
factors [26].

Figure 1: The schematic topography of the multi-layer perceptron ANNs [26].
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The schematic topography of a multi-layer perceptron ANN is shown in Fig.1. In this network,
the processing elements are the artificial neurons (nodes), which have layered structures and
can receive information from other neurons or external inputs. Primarily, once an artificial
neuron receives the input, which is weighted, it determines whether the output should be fed
forward to the next layer as a response. Such a decision—making procedure is known as bias,
and it is controlled through the activation function constructed into the network platform [29]. In
addition, the weights in an artificial network correspond to the synapses in a biological neuron,
whilst the activation function is analogous to the intracellular current conduction process in the
soma. As can be seen in Fig.1, the output of the dependent variable () is a vector with n
components defined by m components of an input vector of independent variables (x), as

expressed in the following Equation (1)

yi = j=1[vijg(2;<n=1 WXy + by;) + byi] (1)

Where v; and wj represent the synaptic weights, x; is the input vector, g is an activation
function, and b is the bias. It is well-known that the bias has a critical effect on the learning
process by shifting the activation function to the left or right by increasing or decreasing the net
input of the activation function, depending on whether it is positive or negative. In multilayer
perceptron ANNSs, the data is fed forwarded from input to output neurons through various hidden
layers in only one direction with no back loops. It may also decrease the gradient error by
adjusting weight and biases in non-linear models [29]. The structure of feed—forward ANNs in
this work comprises four layers, which are one input layer with two nodes (frequency and
temperature), one output layer with one node (the electrical conductivity) and two hidden layers
with three neurons (see Fig. 2). The experimental input datasets were extracted from previously
published literature [30, 31].
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Figure 2: A basic diagram of ANN models.

In the multilayer perceptron ANNSs, initializing the weights and threshold values, setting the
numbers of hidden layers and neurons, and choosing the transfer function and the training
algorithm are crucial factors in generating the desired output response. The rational steps of
ANNSs training process with supervised learning can be described as follows, generating sets of
input and output patterns and initializing the weights (the connections between neurons) to
random values. The activation is the next step, in which inputs and targets are applied, and the
results of hidden and output layers are calculated in the forward direction where the information
flows forward. The step of weight training is then applied, in which weights are adjusted by
computing the error gradient, followed by the weights and biases updating using a learning
algorithm. Similar steps are performed on the hidden layer in the backward direction, where the
error calculated by the network is propagated backwards, and the weights are updated properly.
Lastly, the iteration step is proceeded by repeating the procedure until the optimum response is
accomplished. The steps of ANNs are demonstrated in Fig. 3.

The error algorithm can minimize a particular error by modifying the weights of the connections
such an optimization process proceeds from left (output layer) to right in the back-propagation

direction. The error function, which must be reduced, can be expressed as:

E= T (a - t)? 2)
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Where #cand ay represent the target values and network output, respectively. The £ function
depends on the weights, which change over time [32]. Another machine learning algorithm used
in this work is a decision tree, which divides the dataset into binary tree topographies, where all
datasets are nested under a root node and riven into several leaf nodes. In this model, each

node is classified according to the cost function expressed as [33, 34, 35].

=M MR
J(k, t,) = - MSE,; + — MSER (3)
Where k is the splitting feature, f is the threshold, MSE is the mean square error and m, m,
and mg are the total number of training instances, left-node and right-node training instances,
respectively. Furthermore, statistical indices were applied to determine the decision tree
model’s accuracy in predicting the electrical conductivity for organic-inorganic hybrid

compounds, and the results are shown in Table. 1.
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Figure 3: Logical steps of the ANNSs training process.
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Results and discussion

To find the best topology of ANNs which produces high performance, it is crucial to train the
ANNs with different numbers of hidden layers, neurons, and activation functions using the
experimental dataset in the generalization process. As mentioned previously, the optimum
structure of ANNs applied in this research, which produces the lowest value of error gradient,
consists of four layers, which are one input layer with two neurons, one output layer with one
neuron, and two hidden layers with three neurons. These models were trained, tested, and
validated in the datasets using the temperature and frequency as inputs with regard to the
electrical conductivity as the output response. The training datasets were used to determine the
weights and construct the network, whilst the testing datasets were applied to calculate errors
and forbid overtraining effect through the training phase. To assess the model accuracy the
electrical conductivity was predicted with the independent variables in the test dataset, and then
the findings were compared with the targeted responses of the electrical conductivity in the test
dataset. Usually, the input datasets are divided into two groups, training and testing, and when
the output error is minimized, the training process stops. After adopting the ANN- SCG and
ANN- GD models, it is better to understand the correlations between each feature of the inputs
and the network simulated output, therefore the root mean squared error (RMSE), the
correlation coefficient (RZ) and relative error (/) for all suggested algorithms measured as a

criterion of model's performance using Equations (4), (5), and (6), respectively [36, 37].

RMSE = ’Z?=1(yl'—37i)2
n

(4)

2

R2 = Y- 1(yl 3’1)(371 YL)

2, =72 / -9

Actual valueyyt—predicted valueyyt

x 100
(6)

Actual valuegyt
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Where y; and y; are the targets and network outputs of the electrical conductivity, respectively,
while y; and , y; are the mean values of targeted and predicted electrical conductivity,

respectively, and n is the total number of datasets.

Tablel: The architectures of the proposed ANN models and their performance.

Compound Optimizatio Training RMSE RMSE | Correlatio | Relativ
n hyperparamete | (Training | (Testing n e
algorithm rs ) ) coefficien | Error
t (”
()
ANN-SCG Initial Lambda 0.027 0.007 0.99800 0.001
[CgH1(NO],[CdCI =5x10"’
4] Initial Sigma
=5x107
[CgH{oNO],[CdCI | ANN-GD Initial Learning 0.032 0.035 0.99600 | 0.006
4] Rate=0.4

Momentum=().9

[CgH (NO],[CdCI | ANN-GD Initial Learning 0.041 0.039 0.99400 0.010
4] Rate=0.1

Momentum=0.5

[CsH oNOJ[CACI | ANN-GD | Initial Learning | 0.037 | 0.056 | 0.99202 | 0.015

4] Rate=0.05
Momentum=0.3
[CgHoNOL,[CdCI | Decision — 2.423 - 0.863 -
4] tree
[(C3H7)aNI3 ANN-SCG | Initial Lambda 0.045 0.022 | 0.99600 | 0.003
Bi;Cly, =5%x107"
Initial Sigma
=5x107
[(C3H7)4NI5 ANN-GD | Initial Learning | 0.030 0.016 | 0.99814 | 0.002
BisCly, Rate=(.4

Momentum=(.9
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[(C3H:)aNI; ANN-GD | Initial Learning | 0.029 | 0.017 | 0.99809 | 0.002
B|3C| 12 Rate=0.1

Momentum=0.5

[(C3H7)aNI3 ANN-GD | Initial Learning | 0.023 | 0.017 | 0.99821 | 0.003

BisCly, Rate=0.05
Momentum=0.3
[(C3H7)4NI3 Decision - 1.517 — 0.935 -
Bi;Cl;, tree

Table.1 demonstrates various predicted results using these statistical indicators for the
proposed models. The RMSE is an effective metric for assisting the model efficiency when the
errors are smoothly distributed across the data; it is always a positive value, and the optimal
one should be zero. The more efficient a proposed model is in fitting a dataset, the lower the
RMSE. Eight various ANN models were trained to predict the electrical conductivity for
[CsH(NO],[CdCly] and [(C3H7)4N]3 BisCly,. As can be noticed from Table. 1, RMSE values of
testing data range from 0.007 to 0.056 for [CgH,(NO],[CdCl,], whilst their values of testing data
vary between (0.016 and 0.022 for [(C3H7)4N]; BisClj,. On the other hand, the calculated RMSE
of the decision tree algorithm was higher, which indicates a poor correlation between predicted
and experimental datasets compared with the estimated values obtained from ANN models (see
Table. 1).
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Figure 4: Frequency dependence of AC conductivity at several temperatures for

[CgHoNOI,[CdCl,] using (A) ANNs and (B) decision tree algorithm, respectively.

In addition, after the training of ANNs and decision tree algorithms, the targeted datasets and
predicted outputs of the electrical conductivity of [CgH,o(NO],[CdCl,] in terms of temperature and

frequency were compared. The predicted results obtained from ANN models and decision tree

algorithms are shown in Fig. 4 (A) and (B), respectively.
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Figure 5: Frequency dependence of AC conductivity at several temperatures for [(C3H7)4N]3

BisCl;, using (A) ANNs and (B) decision tree algorithm, respectively.

It can be shown from Fig. 4 (A) that ANN models can adequately demonstrate the relationships

between the electrical conductivity and the input parameters. Besides, the ANNs predicted
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values are closer to the experimental ones, indicating that these models are powerful
techniques to simulate the electrical properties for electrical and electronics engineering
applications. In contrast, the estimated findings produced by the decision tree model showed
that this algorithm is less accurate in anticipating the electrical conductivity for organic—inorganic
hybrid compounds and did not deliver promising performance (see Fig. 4 (B)). Furthermore, the
electrical conductivity in terms of temperature and frequency for [(C3H7)4N]3 BisCly, using ANNs
and decision tree algorithms are illustrated in Fig. 5 (A) and (B), respectively. It can be shown
that the predicted findings resulting from ANNs are considerably fitter than those of the decision
tree model. Besides, ANNs' predicted results showed excellent accuracy with lower RMSE
values than those calculated by the decision tree algorithm. It is essential to visualize the
RMSE error of the input datasets through a histogram plot, which is one of the most used plots
of the ANN models. In general, the error histogram shows how the errors from the testing
datasets are distributed, in other words, it describes how simulated results diverge from the
target ones by determining the level of noise in the input datasets. Therefore, based on the
error histogram distribution, it can be assured that the average error in the datasets is in a
reasonable range. The histogram of errors generated by ANNs through predicting the electrical
conductivity for organic—inorganic hybrid materials is demonstrated in Fig. 6. As can be shown,
the majority of data sets were distributed around zero, which indicates the validation of the input

datasets for each predicted output.

- Error histogram
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Figure 6: The histogram of the estimated RMSE.

626


https://www.neuraldesigner.com/learning/tutorials/data-set#TestingInstances
https://www.neuraldesigner.com/learning/tutorials/data-set#TestingInstances

In addition, the criterion of efficiency for the proposed models was evaluated using the
correlation coefficient (RZ) In general, the correlation coefficient indicates how accurately the
predicted values of models closely fit or fit the targeted ones, and further satisfactorily and
highest magnitude denotes a highly fitted model with a strong correlation between the predicted
and targeted data sets. The accuracy of the ANNs and decision tree models in terms of the
correlation coefficient is illustrated in Table. 1. It is observed that the ANNs algorithms have the
most creditability with higher R’ values of (0.998 and 0.996 and lower values of the relative
error (1) of 0.001 and 0.002, which are consistent with the obtained results demonstrated in
Fig. 4 and 5. On the other hand, the decision tree models were less capable of simulating the
electrical conductivity values with considerable accuracies in terms of higher RMSE values of
2.423 and lower R’ values of (.863. Based on these results, it seems that the ANN models
were more credible and efficient in evaluating the electrical conductivity of organic—inorganic
hybrid compounds. Besides, they proved a good correlation between the independent variables
and the network output, whilst the decision tree algorithm showed less prediction accuracy.
Conclusion

In the current research, a proposed analytical methodology to apply different predictive artificial
intelligence algorithms, including ANN-SCG, ANN-GD and decision tree, was carried out for
predicting the electrical conductivity of organic-inorganic hybrid compounds. It aimed to
determine the most efficient anticipative algorithms, which can generate the most applicable and
stable output response through different groups of independent input parameters. The high
correlation coefficient between the simulated and experimental electrical conductivity, the low
prediction RMSE and relative error show that the high performance of the ANNs, as
computational intelligence approaches, for modelling and understanding the relationship
between the electrical properties of organic—inorganic materials, as a function of frequency and
temperature. On the other hand, the decision tree algorithm has a low correlation coefficient
and high RMSE values, indicating that it was less efficient in achieving the desired performance
compared to ANN models. In addition, the training methodology adopted in this paper is not
only exclusive to solid—solid platforms, as other heterostructures like solid-liquid materials could
be considered using these types of artificial intelligence techniques. Besides, the most essential
impacting parameters should be selected as training inputs using the ANNs simulations to

achieve high performance and precision.
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