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 :الطمخص
فييه اييلا العمييل، تييم تابيييا ااسيياليب القااميية طمييي الييلكاء الاويياناطه لمتنبيي  بالمووييمية الك ربااييية لممركبييات ال جينيية 

 tritetrapropylammoniumdodeca chlorobismuthate(III)العضييييوية واييييير العضييييوية، واييييه 
[(C3H7)4N]3Bi3Cl12  و bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] 

بنيياءا طمييه معرفيية درجيية نييرارة الندييام والتييردد فقيياب تيييم تييدريب مسيياليب الييتعمم الآلييه المقترنيية وا تباراييا والتنقييا مييين 
وينت ا باسيت دام مجموطيات البيانيات التجريبييية التيه تيم نشيراا مسيبقاب تييم اسيت دام مجموطيات البيانيات ايل  كمييد لات 

 الم تمفية  ايل  ال وارزمييات المنفيلة ايه الشيبكة العويبية الاوياناطية لات التيدرج المترافيا  ل وارزميات التعمم الآله
(ANN-SCG) و الشبكة العوبية الاواناطية لات الانندار المتدرج ،(ANN-GD) بالإضيافة اليه شيجرة القيرارب ،

ز المعياملات الفااقية طين ارييا تعزيي الشيبكات العويبية الاوياناطية طميي وجيا ال ويوت، تيم تنسيين جمييج نميالج
لمشبكات من مجيل ننتياج بنيية شيبكية طويبية فااقية، والتيه تيوفر مدنيي قيمية ل اين التيدرجب طنيد المقارنية، وجيد من جمييج 

مد يرت دقيية متناايية فييه ند يار العلاقيات اييير ال ايية مييج مجموطية بيانييات  الشيبكات العوييبية الاوياناطية نميالج
٪ لمجموطيات البيانيات 00نب  مفضل بالموومية الك ربااية المناكاة بدقة تزييد طين الموومية الك ربااية، مما مدى نلي ت

العاليية  RMSEs المد ميةب ليم ييتمكن نميولج شيجرة القيرار مين التنبي  بالموويمية الك رباايية بدقية مقبولية مين نييث قييم
العويبية  دراسية طميي من الشيبكاتومعاملات الارتباا المن فضةب اسيتناداً نليي النتياال التيه تيم النويول طمي يا، ت كيد ال
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تمثييل تقنيييات فعاليية لمغاييية لمتنبيي  بالارتبااييات اييير ال اييية والمعقييدة بييين المتغيييرات المسييتقمة ومعامييل  الاويياناطية
 .الاستجابة التابج

(، اليلكاء الاوياناطه، شيجرة القيرار، الموويمية الك رباايية، ANNالشيبكة العويبية الاوياناطية   : دالاةالكمطاات ال 
 .لنملجة، المركبات العضوية و اير العضويةا

Abstract 
In this work, artificial intelligence-based approaches were applied to predict the electrical conductivity for 
organic-inorganic hybrid compounds, namely tritetrapropylammoniumdodeca chlorobismuthate(III) 
[(C3H7)4N]3Bi3Cl12 and bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] with only the 
knowledge of the system temperature and frequency. The suggested machine learning methods are 
trained, tested, and validated using experimental datasets. These datasets were used as inputs to 
different machine learning algorithms; these implemented algorithms are artificial neural network-scaled 
conjugate gradient (ANN-SCG), artificial neural network-gradient descent (ANN-GD), and decision tree. 
In particular, all ANN models were optimised by adjusting the hyperparameters in order to produce a 
superior neural network architecture, which provides the lowest value of the gradient error. Upon 
comparison, it was found that all ANN models showed better accuracy and significant precision in 
demonstrating nonlinear relationships with the electrical conductivity dataset, leading to a better 
prediction of the simulated electrical conductivity with more than 99% accuracy for the presented data 
sets. The decision tree model could not predict the electrical conductivity with acceptable accuracy in 
terms of high RMSEs and low correlation coefficients. Based on the obtained results, it suggested that 
ANNs were quite efficient techniques for predicting nonlinear and complicated correlations between 
independent variables and the response parameter. 
Keywords: Artificial Neural Network (ANN), Artificial-intelligence, Decision tree, Electrical conductivity, 
Modelling, Organic-inorganic compounds. 
INTRODUCTION 

Over the past few years, a heterostructure of organic-inorganic materials in one compound has 
attracted increasing attention due to their outstanding structural, electronic, optical, thermal, 
magnetic, and catalytic properties. In general, the properties of these materials can be 
controlled to fit a specific application as they link strongly to their structural variations under 
several synthesis process parameters such as temperature and chemical composition. Organic 
materials have several p-type semiconductors that can be fabricated by cost-effective growth 
methods [1, 2, 3]. In particular, these materials have superior light absorption, making them a 
great candidate for solar cells, photodetectors, and light-emitting diodes (LEDs) [4, 5, 6]. Even 
though organic materials can provide high fluorescence capacity, broad polarizability, and 
structural diversity, they yet undergo some challenges, such as poor carrier mobility, low 
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thermodynamic stability, disorganized growth on some traditional substrates such as SiO2, and 
less carrier injection, which still needs to be addressed [7, 8, 9]. Therefore, the focus of 
scientific research is to combine organic and inorganic heterostructures in one product to 
enhance the current multifunctional devices and broaden their efficiencies by exploiting the 
excellent properties of both materials. Thus, inorganic materials with significant carrier mobility 
and ultra-flatness dangling bond-free interface can perform as promising substrates to 
synthesize higher-quality organic materials with sharp-edged interfaces, which offer excellent 
charge transportation pathways for producing high-efficiency electronic and optoelectronic 
devices [10]. Besides, organic materials as large tunable light absorbers can enhance the 
efficiency of 2-dimensional transition metal dichalcogenides (TMDCs) based photodetectors by 
expanding their spectral detectivity level with large responsivity and ultrafast charge carrier 
dissociation [11, 12, 13]. In addition, organic materials can serve as a superior alternative for 
solar cell applications by boosting carrier mobility for FETs [14, 15], accelerating charge carrier 
dissociation and slowing down reconnection of organic−inorganic heterostructure [16, 17]. 
Therefore, organic−inorganic hybrid compounds have paved the way for a broad spectrum of 
novel applications in optoelectronics [18], p-n junctions [19], catalysis [20], photovoltaics [21], 

and neuromorphic computing devices [22]. It reported that the electrical characteristics of most 
organic−inorganic hybrid compounds can be studied by evaluating their electrical conductivity, 
which is mostly utilized to understand the electrical conduction behaviour of solid-state 
materials [23]. Therefore, this work aims to apply several predictive algorithms, namely, SCG-
ANN, GD-ANN, and decision tree, to predict the electrical conductivity of two different organic-
inorganic hybrid compounds, which are [(C3H7)4N]3Bi3Cl12 and [C8H10NO]2[CdCl4]. In addition, 
the performance and accuracy of all proposed models were validated as anticipation 
approaches through analytical methodology, and the connections between the input and output 
parameters were confirmed. 
Artificial intelligence-based models 
In general, artificial intelligence-based models are innovative algorithms that analyse datasets 
with accuracy, determine complicated patterns, and enable the system to produce sensible 
decisions. These sophisticated artificial intelligence algorithms perform according to a concept of 
machine learning and are designed to simulate human brain intelligence. They learn from 
profound training datasets to build their insight and predictive potencies. In addition, it reported 
that artificial intelligence techniques show better performance compared to conventional 
statistics for modelling complex nonlinear relationships between input and output datasets and 
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providing excellent prediction [24, 25]. One of the most used models is deep artificial neural 
networks (DANNs), which is considered a powerful method inspired by biological neural 
networks for solving problems such as function approximation, regression analysis, time series 
forecasting, classification analysis, and identification patterns in datasets, decision making, and 
data processing [26]. Compared to the most typical statistics, ANNs have shown various 
advantages, as they can handle several sorts of data, e.g., continuous, binomial, and discrete. 
Besides, they can develop complicated models without the need to previously know the 
functional dependency between several attributes, therefore, they can discover appropriate 
interconnections in the dataset. Furthermore, no specific experimental arrangement and a 
particular background are needed to apply ANNs; hence, they are easy to use and cost-
effective techniques with fewer experimental runs for modelling procedures to produce the 
optimum findings [27, 28]. 
In this work, multi-layer perceptron ANNs are applied for the following causes first, they enable 
the artificial network to build parametrical nonlinear relationships of the input variables, as the 
output represents a nonlinear function of a linear combination of the neuron outputs in the 
hidden layer which themselves represent nonlinear functions of linear combinations of the input 
variables. Secondly, depending on the appealed response, the multi-layer perceptron ANNs 
automatically neglect some irrelevant factors by allocating zero or very small weights to these 
factors [26].  
 

 
 

Figure 1: The schematic topography of the multi-layer perceptron ANNs [26]. 
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The schematic topography of a multi-layer perceptron ANN is shown in Fig.1. In this network, 
the processing elements are the artificial neurons (nodes), which have layered structures and 
can receive information from other neurons or external inputs. Primarily, once an artificial 
neuron receives the input, which is weighted, it determines whether the output should be fed 
forward to the next layer as a response. Such a decision-making procedure is known as bias, 
and it is controlled through the activation function constructed into the network platform [29]. In 
addition, the weights in an artificial network correspond to the synapses in a biological neuron, 
whilst the activation function is analogous to the intracellular current conduction process in the 
soma. As can be seen in Fig.1, the output of the dependent variable (y) is a vector with n 
components defined by m components of an input vector of independent variables (x), as 
expressed in the following Equation (1)  
 

   ∑      (∑          
 
   )      

 
                               (1) 

 
Where vij and wjk represent the synaptic weights, xk is the input vector, g is an activation 
function, and b is the bias. It is well-known that the bias has a critical effect on the learning 
process by shifting the activation function to the left or right by increasing or decreasing the net 
input of the activation function, depending on whether it is positive or negative. In multilayer 
perceptron ANNs, the data is fed forwarded from input to output neurons through various hidden 
layers in only one direction with no back loops. It may also decrease the gradient error by 
adjusting weight and biases in non-linear models [29]. The structure of feed-forward ANNs in 
this work comprises four layers, which are one input layer with two nodes (frequency and 
temperature), one output layer with one node (the electrical conductivity) and two hidden layers 
with three neurons (see Fig. 2). The experimental input datasets were extracted from previously 
published literature [30, 31]. 
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Figure 2: A basic diagram of ANN models. 
 

In the multilayer perceptron ANNs, initializing the weights and threshold values, setting the 
numbers of hidden layers and neurons, and choosing the transfer function and the training 
algorithm are crucial factors in generating the desired output response. The rational steps of 
ANNs training process with supervised learning can be described as follows, generating sets of 
input and output patterns and initializing the weights (the connections between neurons) to 
random values. The activation is the next step, in which inputs and targets are applied, and the 
results of hidden and output layers are calculated in the forward direction where the information 
flows forward. The step of weight training is then applied, in which weights are adjusted by 
computing the error gradient, followed by the weights and biases updating using a learning 
algorithm. Similar steps are performed on the hidden layer in the backward direction, where the 
error calculated by the network is propagated backwards, and the weights are updated properly. 
Lastly, the iteration step is proceeded by repeating the procedure until the optimum response is 
accomplished. The steps of ANNs are demonstrated in Fig. 3.  
The error algorithm can minimize a particular error by modifying the weights of the connections 
such an optimization process proceeds from left (output layer) to right in the back-propagation 
direction. The error function, which must be reduced, can be expressed as: 

   
 

 
∑ (     )

  
                                                      (2) 
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Where tK and aK represent the target values and network output, respectively. The E function 
depends on the weights, which change over time [32]. Another machine learning algorithm used 
in this work is a decision tree, which divides the dataset into binary tree topographies, where all 
datasets are nested under a root node and riven into several leaf nodes. In this model, each 
node is classified according to the cost function expressed as [33, 34, 35]. 
 

 (    )  
  

 
     

  

 
                                              (3) 

 
Where k is the splitting feature, tK is the threshold, MSE is the mean square error and m, mL 
and mR are the total number of training instances, left-node and right-node training instances, 
respectively. Furthermore, statistical indices were applied to determine the decision tree 
model’s accuracy in predicting the electrical conductivity for organic-inorganic hybrid 
compounds, and the results are shown in Table. 1. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Logical steps of the ANNs training process. 
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Results and discussion 
To find the best topology of ANNs which produces high performance, it is crucial to train the 
ANNs with different numbers of hidden layers, neurons, and activation functions using the 
experimental dataset in the generalization process. As mentioned previously, the optimum 
structure of ANNs applied in this research, which produces the lowest value of error gradient, 
consists of four layers, which are one input layer with two neurons, one output layer with one 
neuron, and two hidden layers with three neurons. These models were trained, tested, and 
validated in the datasets using the temperature and frequency as inputs with regard to the 
electrical conductivity as the output response. The training datasets were used to determine the 
weights and construct the network, whilst the testing datasets were applied to calculate errors 
and forbid overtraining effect through the training phase. To assess the model accuracy the 
electrical conductivity was predicted with the independent variables in the test dataset, and then 
the findings were compared with the targeted responses of the electrical conductivity in the test 
dataset. Usually, the input datasets are divided into two groups, training and testing, and when 
the output error is minimized, the training process stops. After adopting the ANN- SCG and 
ANN- GD models, it is better to understand the correlations between each feature of the inputs 
and the network simulated output, therefore the root mean squared error (RMSE), the 
correlation coefficient (R2), and relative error (r) for all suggested algorithms measured as a 
criterion of model's performance using Equations (4), (5), and (6), respectively [36, 37].  
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Where    and  ̂  are the targets and network outputs of the electrical conductivity, respectively, 
while  ̅   and  ,   ̅̂  are the mean values of targeted and predicted electrical conductivity, 
respectively, and n is the total number of datasets.  
 

Table1: The architectures of the proposed ANN models and their performance. 
 

Compound Optimizatio
n 

algorithm 

Training 
hyperparamete

rs 

RMSE 
(Training

) 

RMSE 
(Testing

) 

Correlatio
n 

coefficien
t  

(R2) 

Relativ
e 

Error  
(r) 

 
[C8H10NO]2[CdCl

4] 

ANN-SCG 
 

Initial Lambda 
=5×10-7 

Initial Sigma 
=5×10-5 

0.027 0.007 0.99800 0.001 

[C8H10NO]2[CdCl
4] 

ANN-GD Initial Learning 
Rate=0.4 

Momentum=0.9 

0.032 0.035 0.99600 0.006 

[C8H10NO]2[CdCl
4] 

ANN-GD Initial Learning 
Rate=0.1 

Momentum=0.5 

0.041 0.039 0.99400 0.010 

[C8H10NO]2[CdCl
4] 

ANN-GD Initial Learning 
Rate=0.05 

Momentum=0.3 

0.037 0.056 0.99202 0.015 

[C8H10NO]2[CdCl
4] 

Decision 
tree 

⸻ 2.423 
 

⸻ 0.863 ⸻ 

[(C3H7)4N]3 

Bi3Cl12 
ANN-SCG 

 
Initial Lambda 

=5×10-7 
Initial Sigma 

=5×10-5 

0.045 0.022 0.99600 0.003 

[(C3H7)4N]3 

Bi3Cl12 
ANN-GD Initial Learning 

Rate=0.4 
Momentum=0.9 

0.030 0.016 0.99814 0.002 
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[(C3H7)4N]3 

Bi3Cl12 
ANN-GD Initial Learning 

Rate=0.1 
Momentum=0.5 

0.029 0.017 0.99809 0.002 

[(C3H7)4N]3 

Bi3Cl12 
ANN-GD Initial Learning 

Rate=0.05 
Momentum=0.3 

0.023 0.017 0.99821 
 

0.003 

[(C3H7)4N]3 

Bi3Cl12 
Decision 

tree 
⸻ 1.517 ⸻ 0.935 ⸻ 

 
Table.1 demonstrates various predicted results using these statistical indicators for the 
proposed models. The RMSE is an effective metric for assisting the model efficiency when the 
errors are smoothly distributed across the data; it is always a positive value, and the optimal 
one should be zero. The more efficient a proposed model is in fitting a dataset, the lower the 
RMSE. Eight various ANN models were trained to predict the electrical conductivity for 
[C8H10NO]2[CdCl4] and [(C3H7)4N]3 Bi3Cl12. As can be noticed from Table. 1, RMSE values of 
testing data range from 0.007 to 0.056 for [C8H10NO]2[CdCl4], whilst their values of testing data 
vary between 0.016 and 0.022 for [(C3H7)4N]3 Bi3Cl12. On the other hand, the calculated RMSE 
of the decision tree algorithm was higher, which indicates a poor correlation between predicted 
and experimental datasets compared with the estimated values obtained from ANN models (see 
Table. 1).  
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Figure 4: Frequency dependence of AC conductivity at several temperatures for 
[C8H10NO]2[CdCl4] using (A) ANNs and (B) decision tree algorithm, respectively. 

 
In addition, after the training of ANNs and decision tree algorithms, the targeted datasets and 
predicted outputs of the electrical conductivity of [C8H10NO]2[CdCl4] in terms of temperature and 
frequency were compared. The predicted results obtained from ANN models and decision tree 
algorithms are shown in Fig. 4 (A) and (B), respectively.  
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Figure 5: Frequency dependence of AC conductivity at several temperatures for [(C3H7)4N]3 

Bi3Cl12 using (A) ANNs and (B) decision tree algorithm, respectively. 
 

It can be shown from Fig. 4 (A) that ANN models can adequately demonstrate the relationships 
between the electrical conductivity and the input parameters. Besides, the ANNs predicted 
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values are closer to the experimental ones, indicating that these models are powerful 
techniques to simulate the electrical properties for electrical and electronics engineering 
applications. In contrast, the estimated findings produced by the decision tree model showed 
that this algorithm is less accurate in anticipating the electrical conductivity for organic-inorganic 
hybrid compounds and did not deliver promising performance (see Fig. 4 (B)). Furthermore, the 
electrical conductivity in terms of temperature and frequency for [(C3H7)4N]3 Bi3Cl12 using  ANNs 
and decision tree algorithms are illustrated in Fig. 5 (A) and (B), respectively. It can be shown 
that the predicted findings resulting from ANNs are considerably fitter than those of the decision 
tree model. Besides, ANNs' predicted results showed excellent accuracy with lower RMSE 
values than those calculated by the decision tree algorithm. It is essential to visualize the 
RMSE error of the input datasets through a histogram plot, which is one of the most used plots 
of the ANN models. In general, the error histogram shows how the errors from the testing 
datasets are distributed, in other words, it describes how simulated results diverge from the 
target ones by determining the level of noise in the input datasets. Therefore, based on the 
error histogram distribution, it can be assured that the average error in the datasets is in a 
reasonable range. The histogram of errors generated by ANNs through predicting the electrical 
conductivity for organic-inorganic hybrid materials is demonstrated in Fig. 6. As can be shown, 
the majority of data sets were distributed around zero, which indicates the validation of the input 
datasets for each predicted output. 
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Figure 6: The histogram of the estimated RMSE. 
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In addition, the criterion of efficiency for the proposed models was evaluated using the 
correlation coefficient (R2). In general, the correlation coefficient indicates how accurately the 
predicted values of models closely fit or fit the targeted ones, and further satisfactorily and 
highest magnitude denotes a highly fitted model with a strong correlation between the predicted 
and targeted data sets. The accuracy of the ANNs and decision tree models in terms of the 
correlation coefficient is illustrated in Table. 1. It is observed that the ANNs algorithms have the 
most creditability with higher R2 values of 0.998 and 0.996 and lower values of the relative 
error (r) of 0.001 and 0.002, which are consistent with the obtained results demonstrated in 
Fig. 4 and 5. On the other hand, the decision tree models were less capable of simulating the 
electrical conductivity values with considerable accuracies in terms of higher RMSE values of 
2.423 and lower R2 values of 0.863. Based on these results, it seems that the ANN models 
were more credible and efficient in evaluating the electrical conductivity of organic-inorganic 
hybrid compounds. Besides, they proved a good correlation between the independent variables 
and the network output, whilst the decision tree algorithm showed less prediction accuracy.  
Conclusion 
In the current research, a proposed analytical methodology to apply different predictive artificial 
intelligence algorithms, including ANN-SCG, ANN-GD and decision tree, was carried out for 
predicting the electrical conductivity of organic-inorganic hybrid compounds. It aimed to 
determine the most efficient anticipative algorithms, which can generate the most applicable and 
stable output response through different groups of independent input parameters. The high 
correlation coefficient between the simulated and experimental electrical conductivity, the low 
prediction RMSE and relative error show that the high performance of the ANNs, as 
computational intelligence approaches, for modelling and understanding the relationship 
between the electrical properties of organic-inorganic materials, as a function of frequency and 
temperature. On the other hand, the decision tree algorithm has a low correlation coefficient 
and high RMSE values, indicating that it was less efficient in achieving the desired performance 
compared to ANN models. In addition, the training methodology adopted in this paper is not 
only exclusive to solid-solid platforms, as other heterostructures like solid-liquid materials could 
be considered using these types of artificial intelligence techniques. Besides, the most essential 
impacting parameters should be selected as training inputs using the ANNs simulations to 
achieve high performance and precision. 
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