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 الملخص 

  في الفيزيائية الأحداث من متنوعة لمجموعة مناسبة نماذج  أنها صحيحة غيرال الرتب من المشتقات ذات التفاضلية المعادلات أثبتت قدل
  الدراسة هذه في سأناقش. العصبية  والشبكات الموائع وميكانيكا التخميد وقوانين الانتشار عمليات ذلك في بما المجالات من العديد

ذات  ( ODEs) الكسرية العادية التفاضلية المعادلات لحل مولتون-باشفورث-آدامز وطريقة  ديثيلم طريقة عدديتين، طريقتين
 الشروط الإبتدائية. 

,المعادلات التفاضلية العادية الكسري, المشتق ديثيلم  طريقة  ,المشتقة الكسرية كابيتو,مولتون-باشفورث-آدامز  طريقة  : الكلمات الدالة
 الكسري ليومان لوفيل. 

Abstract 
Differential equations with non-integer order derivatives have demonstrated are suitable models for a 
variety of physical events in several fields including diffusion processes and damping laws, fluid 
mechanics neural networks. In this study, i will discuss two numerical methods Diethelm's method 
and Adams-Bashforth-Moulton method for solving fractional ordinary differential equations (ODEs) 
with initial conditions.  

Keywords: Adams-Bashforth-Moulton method Caputo fractional derivative Diethelm Method, 
Fractional ordinary differential equations, Riemann-Liouville fractional derivative . 

 1. Introduction. 

FDEs have been a subject of interest not only among mathematicians but also among 

physicists and engineers. In fact, we can find numerous applications in economic system 
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[1], fluid mechanics [2], biology [3], signal processing, dynamics of earthquakes, optics, 

electromagnetic waves, chaotic dynamics, statistical physics, thermodynamics, neural 

networks, and so on [4]. 

Actually, in many cases, it is difficult to obtain the analytical solution. Therefore, the 

numerical methods are essential for approximation solution of many FDEs. Many 

approximations have sprung up recently, 

There are a number of numerical and analytical methods developed for various types of 

FDEs, for example, variational iterative method, fractional differential transform method, 

a domain decomposition method, homotopy perturbation method and power series 

method [4], the local meshless method based on Laplace transform [5], finite difference 

methods [6] and finite element methods [7–9]. 

Hadamard finite-part integral is used by Diethelm [13] to obtain an approximate 

algorithm for solving fractional differential equation. Podlubny [11] used the Grünwald-

Letnikov method to solve FDEs. And very recently Diethelm, Ford and Freed [19] 

introduced a fractional Adams-type predictor-corrector method for solving FDEs. 

Lubich [20] wrote the fractional differential equation in the form of an Abel-Volterra 

integral equation and used the convolution quadrature method to approximate the 

fractional integral and obtained an approximate solution for fractional differential 

equations.  

In this paper ,I am aiming to use Diethelm's method and Adams-Bashforth-Moulton 

method to find the general solution of  fractional differential equations with initial 

conditions. 

𝐷𝑡
𝛼𝑦(𝑡) =   𝑓(𝑡, 𝑦(𝑡)),       

                        0
𝐶         0 ≤ 𝑡 ≤ 𝑇                                  (1.1) 

                   𝑦𝑚(0) = 𝑦0
𝑚, 𝑚 = 0,1,2, … , ⌈𝛼⌉ − 1,                                (1.2) 
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Where 𝑦0𝑚   might be random actual numbers, and  𝛼  > 0.here 𝐷𝑡𝛼,𝟎
𝐶  represents the 

differential operator in the Caputo sense,  n - 1 < 𝛼 < n . 

𝐷𝑡
𝛼𝑦(𝑡) =  

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1
𝑡

0

𝑦𝑛(𝜏)𝑑𝜏,                   0
𝐶  

where n = ⌈𝛼⌉ is the smallest integer ≥  𝛼 

The following parts are organized as follows. In Section 2 , i introduce the basic 

definition of fractional caculus. In Section 3, i consider Diethelm’s Backward 

Difference Method. In Section 4, i consider Adams-Bashforth-Moulton method. In 

Section 5, i will outline the summary of the paper.  

2 . Basic definitions 

In this section, I set up notations, basic definitions and main properties of Riemann 

Liouville Integral and derivative and  the definition of Caputo fractional derivative is also 

given. 

2.1. Definition ([16] pp.33) 

The Riemann-Liouville fractional integral of order   0 < 𝛼 < 1  , is denoted by the 

expression: 

                       𝐷𝑡−𝛼𝑎
𝑅 𝑓(𝑡)= 1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏 
𝑡

𝑎
.                                     (2.1) 

2.2 .Definition ([16, pp.35]) 

Let 𝛼 > 0, the Riemann-Liouville fractional derivative is defined with 𝑛 − 1 < 𝛼 ≤ 𝑛  

by, 

𝐷𝑡
𝛼

            𝑎
𝑅 𝑓(𝑡)=𝐷𝑛 [𝐷𝑡𝛼−𝑛𝑓(𝑡)]=𝐷𝑛

1

𝛤(𝑛−𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1
𝑡

𝑎
𝑓(𝜏)𝑑𝜏,    (2.2) 

where  𝐷𝑛 = 𝑑𝑛

𝑑𝑡𝑛
 denotes the standard nth derivative. 
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Definition 2.3 [16] 

The Caputo fractional derivative of order 𝛼 > 0 is takes the form:               

     𝐷𝑡
𝛼 𝑓(𝑡) 𝑎

𝐶 =      

{

1

𝛤(𝑛−𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1[𝐷𝑛
𝑡

𝑎
𝑓(𝜏)]𝑑𝜏,     where 𝑛 − 1 < 𝛼 < 𝑛,

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡),                                                        where  𝛼 = 𝑛.                   

(2.3) 

The relationship between the Caputo derivative and the Riemann-Liouville derivative 

is the following, K. Diethelm [12], 

Definition 2.4 [11] 

 The Gamma function Γ(𝑥) is defined by the integral  

                                                  Γ(𝑥) = ∫ 𝑒−𝑡𝑡𝑥−1
∞

0
𝑑𝑡  

The Gamma function has one of the basic properties: 

                                          Γ(𝑥 + 1) = 𝑥Γ(𝑥)                                         (2.4) 

Through the application of a partial integration, for the arbitrary   x > 0, we can 

manipulate the integral in the definition of the Gamma function which yields: 

Γ(𝑥 + 1) =    ∫ 𝑒−𝑡𝑡𝑥−1
∞

0

𝑑𝑡 = [−𝑒−𝑡𝑡𝑥−1]0
∞  + 𝑥 ∫ 𝑒−𝑡

∞

0

 𝑡𝑥−1 𝑑𝑡 = 𝑥Γ(𝑥)   

 

Obviously, Γ(1) = 0! = 1, and using (2.4) we obtain for   𝑥 = 1,2,3,…: 

                                         Γ(2) = 1 ∙ Γ(1) = 1  
                                         Γ(3) = 2 ∙  Γ(2) = 2 ∙ 1 = 2! 
                                         Γ(4) = 3 ∙ Γ(3) =3! 

                                                        ∙ 
                                                        ∙ 
                                                        ∙ 
                              Γ(𝑛 + 1) =  𝑛 Γ(𝑛)  = 𝑛 ∙ (𝑛 − 1)! = 𝑛! 
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3 Diethelm’s Backward Difference Method   

The entire procedure is known as the Diethelm fractional backward difference approach 

because it was first detailed in Diethelm's publication [10], published in 1997. 

This section examines the Caputo type fractional ordinary differential equation. 

 𝐷𝑡
𝛼𝑦(𝑡) =   𝜆 𝑦(𝑡) + 𝑓(𝑡), 0 < 𝛼 < 1,   𝜆 ≤ 0,    0

𝐶    0 ≤ 𝑡 ≤ 1          (3.1) 

                      with initial condition:  𝑦(0) = 𝑦0.                                    (3.2) 

where  𝛼 is the order of the derivative, t is the independent variable 𝑓 is 

a given function on the interval [0,1] , 𝑦0 is the given initial condition, 

 𝜆 ≤ 0 and y is the unknown function. From the definition of Riemann-Liouville 

fractional derivative .This equation can be transformed into a fractional differential 

equation with the Riemann-Liouville derivative (see Definition (2.1-2.2)), 

               𝐷𝑡𝛼[𝑦 − 𝑦0](𝑡) =  𝜆𝑦(𝑡) + 𝑓(𝑡),0
𝑅                0 ≤ 𝑡 ≤ 1,           (3.3) 

                   With the  initial condition:  𝑦(0) = 𝑦0.                             (3.4) 

Note that  

𝐷𝑡
𝛼(𝑦0) =

𝑑

𝑑𝑡

1

Γ(1 − 𝛼)
∫(𝑡 − 𝜏)−𝛼
𝑡

0

𝑦0𝑑𝜏             0
𝑅   

                                                  =
𝑦0

Γ(1 − α)
 
𝑑

𝑑𝑡
(
1

1 − 𝛼
𝑡1−𝛼)                                 

=
𝑦0

Γ(1 − α)
𝑡−𝛼   

In order to define a backward difference formula generalization, Diethlm [10] 

demonstrated a numerical approach that appears to utilize Riemann-Liouville fractional 

derivative discussed above. The answer's existence and originality have been 

demonstrated in [15]. 

Riemann-Liouville fractional derivative is obtained by switching the directions of 

differentiation and integration, (see definition 2.1) we get, 

𝐷𝑡
𝛼𝑦(𝑡) =  

1

Γ(−𝛼)
∫ (𝑡 − 𝜏)−𝛼−1
𝑡

0

𝑦(𝜏)𝑑𝜏,                   0
𝑅  
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Where the Hadamard finite-part formulation of the integral is used [14]. 

Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 1 be a partition of [0, 1]. 

Applying the approximation to the equispaced grid  𝑡𝑗 = 𝑗/𝑛 , 𝑗 = 1,2, … , 𝑛, ∆𝑡 = 1/𝑛 ,  

is the time step. We obtain, 

𝐷𝑡
𝛼𝑦(𝑡𝑗)0

𝑅 =
1

𝛤(−𝛼)
∫

𝑦(𝜏)

(𝑡𝑗−𝜏)
𝛼+1

𝑡𝑗
0

𝑑𝜏, 

setting   𝑡𝑗 − 𝜏 = 𝑡𝑗𝜔, we get 

𝐷𝑡
𝛼𝑦(𝑡𝑗)0

𝑅  = 𝑡𝑗
−𝛼

𝛤(−𝛼)
∫

𝑦(𝑡𝑗−𝑡𝑗𝜔)−𝑦(0)

𝜔𝛼+1

1

0
𝑑𝜔  =

𝑡𝑗
−𝛼

𝛤(−𝛼)
∫ 𝑔(𝜔)𝜔−𝛼−1𝑑𝜔
1

0
, 

 

where       

𝑔(𝜔) = 𝑦(𝑡𝑗 − 𝑡𝑗𝜔) − 𝑦(0). 
In this section, a compound quadrature formula is used in place of the integral. [13], and 

equally spaced nodes 0, 1
𝑗
,
2

𝑗
, … ,1 for each 𝑗, gives 

𝐷𝑡
𝛼𝑦(𝑡𝑗) =

𝑡𝑗
−𝛼

𝛤(−𝛼)
 [∑𝛼𝑘𝑗𝑦(𝑡𝑗 − 𝑡𝑘) +

𝑗

𝑘=0

 𝑅𝑗(𝑔)] ,0
𝑅  

Thus the approximation can be represented by a quadrature formula of a product 

trapezoidal form  

                                                𝑄𝑗[𝑔] ≔ ∑ 𝛼𝑘𝑗𝑔(
𝑘

𝑗
) ≈ ∫ 𝑔(𝜔)𝜔−𝛼−1

1

0

𝑗
𝑘=0 𝑑𝜔, 

Where 

                                                         ∫ 𝑔(𝜔)
1

0
𝜏−𝛼−1𝑑𝜏 = 𝑄𝑗[𝑔] + 𝑅𝑗(𝑔), 

And the remainder term 𝑅𝑗(𝑔) satisfies  

                 ‖𝑅𝑗(𝑔)‖ ≤ 𝐶𝑗
𝛼−2 sup0≤𝑡≤𝑇‖𝑦

′′(𝑡𝑗 − 𝑡𝑗𝜔)‖. 

Thus,  

         𝐷𝑡
𝛼𝑦(𝑡𝑗)0

𝑅   =   
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∆𝑡−𝛼

𝛤(2 − 𝛼)
∑(−𝛼)(1 − 𝛼)𝑗−𝛼 𝛼𝑘𝑗 𝑦(𝑡𝑗 − 𝑡𝑘) +

𝑗

𝑘=0

𝑡𝑗
−𝛼

𝛤(−𝛼)
  𝑅𝑗(𝑔)  

                        = ∆𝑡−𝛼∑
(−𝛼)(1 − 𝛼)𝑗−𝛼 𝛼𝑘𝑗 

𝛤(2 − 𝛼)
𝑦(𝑡𝑗 − 𝑡𝑘)

𝑗

𝑘=0

+
𝑡𝑗
−𝛼

𝛤(−𝛼)
  𝑅𝑗(𝑔)                       

= ∆𝑡−𝛼∑𝜔𝑘𝑗 𝑦(𝑡𝑗 − 𝑡𝑘) +

𝑗

𝑘=0

𝑡𝑗
−𝛼

𝛤(−𝛼)
  𝑅𝑗(𝑔). 

Here 

                      Γ(2 − 𝛼)𝜔𝑘𝑗 = −𝛼(1 − 𝛼)𝑗−𝛼𝛼𝑘𝑗 ,                                 (3.5) 

Where the weights 𝜔𝑘𝑗 satisfies that [13] 

     Γ(2 − 𝛼)𝜔𝑘𝑗 =

{

1,                                                                       for 𝑘 = 0,                   

−2𝑘1−𝛼 + (𝑘 − 1)1−𝛼 + (𝑘 + 1)1−𝛼,           for 𝑘 = 1,2, … , 𝑗 − 1,   

−(𝛼 − 1)𝑘−𝛼 + (𝑘 − 1)1−𝛼 − 𝑘1−𝛼,         for k = j,                      

 (3.6) 

 and 𝛼𝑘𝑗 satisfies 

𝛼(1 − 𝛼)𝑗−𝛼𝛼𝑘𝑗 =

{

−1,                                                                  for 𝑘 = 0,                   

2𝑘1−𝛼 − (𝑘 − 1)1−𝛼 − (𝑘 + 1)1−𝛼,             for 𝑘 = 1,2, … , 𝑗 − 1,   

(𝛼 − 1)𝑘−𝛼 − (𝑘 − 1)1−𝛼 + 𝑘1−𝛼,          for k = j.                     

  (3.7)  

 

Now this section considers the finite difference method of 

                         𝐷𝑡
𝛼[𝑦 − 𝑦0](𝑡) =  𝜆𝑦(𝑡) + 𝑓(𝑡),0

𝑅    at   𝑡 = 𝑡𝑗,get 

𝐷𝑡
𝛼[𝑦(𝑡) − 𝑦(0)]|𝑡=𝑡𝑗 =  𝜆𝑦(𝑡𝑗) + 𝑓(𝑡𝑗),0

                             𝑅          

   ∆𝑡−𝛼∑𝜔𝑘𝑗[ 𝑦(𝑡𝑗 − 𝑡𝑘) − 𝑦(0)] +

𝑗

𝑘=0

𝑡𝑗
−𝛼

𝛤(−𝛼)
  𝑅𝑗(𝑔) 

                                                                    = 𝜆𝑦(𝑡𝑗) + 𝑓(𝑡𝑗),                                    
 

or 



503 

 

𝐷𝑡
𝛼[𝑦(𝑡) − 𝑦(0)]|𝑡=𝑡𝑗 = ∆𝑡−𝛼∑𝜔𝑘𝑗[ 𝑦(𝑡𝑗 − 𝑡𝑘) − 𝑦(0)] +

𝑗

𝑘=0

𝑡𝑗
−𝛼

𝛤(−𝛼)
  𝑅𝑗(𝑔) ,0

𝑅  

Denote  𝑦𝑗 ≈ 𝑦(𝑡𝑗)  as the approximation of  𝑦(𝑡𝑗), this study can clarify   

∆𝑡−𝛼 ∑ 𝜔𝑘𝑗[ 𝑦𝑗−𝑘 − 𝑦0] = 𝜆𝑦𝑗 + 𝑓𝑗
𝑗
𝑘=0 ,     

Let k=0, we get 

(𝜔0𝑗 − ∆𝑡
𝛼𝜆)𝑦𝑗 = ∆𝑡𝛼𝑓𝑗 −∑𝜔𝑘𝑗

𝑗

𝑘=1

𝑦𝑗−𝑘 +∑𝜔𝑘𝑗

𝑗

𝑘=0

𝑦0. 

From (3.5) we can find   

∑𝜔𝑘𝑗

𝑗

𝑘=0

=
−𝛼(1 − 𝛼)𝑗−𝛼

  Γ(2 − 𝛼)
∑𝛼𝑘𝑗

𝑗

𝑘=0

.        

But 

∑𝛼𝑘𝑗

𝑗

𝑘=0

= ∫𝑢−𝛼−1𝑑𝑢 = −
1

𝛼

1

0

.             

Thus 

                 ∑𝜔𝑘𝑗

𝑗

𝑘=0

=
−𝛼(1 − 𝛼)𝑗−𝛼

  Γ(2 − 𝛼)
(−

1

𝛼
) =

𝑗−𝛼

Γ(1 − 𝛼)
. 

Diethelm's numerical approach for the equations (3.3) and (3.4) is provided by the 

implicit formula below: 

 𝑦𝑗 = (𝜔0𝑗 − ∆𝑡
𝛼𝜆)−1[∆𝑡𝛼𝑓𝑗 −∑ 𝜔𝑘𝑗

𝑗
𝑘=1 𝑦𝑗−𝑘 +

                                                                          + 
𝑗−𝛼

Γ(1−𝛼)
𝑦0].                            (3.8) 

4. Adams-ashforth-Moulton method [12] 

This section will present the algorithm for the fractional differential equation in the 

Caputo type: 

                      𝐷𝑡𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) 𝟎
𝑪 ,                                                      (4.1) 

with the initial condition 
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               𝐷𝑘𝑦(0) = 𝑏𝑘   ,     𝑘 = 0,1,2, … , 𝑛 − 1  ,                                 (4.2) 

The algorithm to solve the fractional differential equation of Caputo type is based on the 

fractional formulation of the classical Adams-Bashforth-Moulton method. In particular 

by using the formulation of the problem in Abel-Volterra integral form, i.e 

 𝑦(𝑡) = ∑  
𝐷𝑘𝑦(0)𝑡𝑘

𝑘!

𝑛−1
𝑘=0 +

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1
𝑡

0
𝑓(𝜏, 𝑦(𝜏))𝑑𝜏                  (4.3) 

In order to discuss differential equations of fractional order it is necessary to review the 

classical differential equations and the methods used to numerically solve these equations.  

From the classical algorithms it is possible to extend the resulting formulas to the fractional 

differential equation so it is important to understand this common background for 

numerical methods. It must be noted that many classical numerical schemes can be 

extended in more than one way which can led to issues within literature as different 

equations could be conveyed in a similar manner creating a potential source of confusion. 

For example, the fractional Adams–Moulton rules of Galeone and Garrappa [17] do not 

coincide with the methods of the same name as it will be demonstrated later in this section 

below. 

4.1. Classical Formulation 

Diethelm [12] identifies that the classical Adams–Bashforth–Moulton algorithm for first-

order equations should be reviewed to enable a starting point by using the familiar initial-

value problem for the first-order differential equation 

                                         𝐷𝑦(𝑡) = 𝑓(𝑡, 𝑌(𝑡)),                                       (4.4) 

                                            𝑦(0) = 𝑦0 .                                                   (4.5) 
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It is assumed that the function  f  will be a unique solution that exists on some 

interval  [0, 𝑇].  Following Hairer & Wanner [18], Diethelm [12] advises to use the 

predictor-corrector technique of Adams where it is assumed that for simplicity that 

mathematician is working on a uniform grid {𝑡𝑖 = 𝑖ℎ ∶ 𝑖 = 0,1, … ,𝑁} with some integer 

𝑁 and  ℎ = 𝑇/𝑁.    While in some applications it would be more efficient to utilise a 

non-uniform grid and this will be identified to the reader and thus a generalised sense of 

numerical approximation formulas will be utilised. When reviewing the properties of the 

scheme the author will restrict themselves to the isometric case. 

Basically it assumed that the approximations have already been calculated as 𝑦𝑖≈𝑦(𝑡𝑖), 

 (𝑖 = 1,2, … , 𝑛).  While trying to obtain the approximation 𝑦𝑛+1  by means of the 

equation 

                   𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) + ∫ 𝑓(𝑧, 𝑦(𝑧))𝑑𝑧.
𝑡𝑛+1
𝑡𝑛

                              (4.6) 

Following the integration of equation (4.4) on the interval [𝑡𝑛,𝑡𝑛+1] without knowing 

either of the expressions on the right-hand side of equation (4.6) exactly. Yet there is an 

approximation for   𝑦(𝑡𝑛), namely 𝑦𝑛  that can exploit instead. The integral is then 

replaced by the two-point trapezoidal quadrature formula 

                  ∫ 𝑔(𝑧)𝑑𝑧 ≈
𝑏−𝑎

2

𝑏

𝑎
(𝑔(𝑎) + 𝑔(𝑏)),                                        (4.7) 

Thus giving an equation for the unknown approximation   𝑦𝑘+1,   it being 

   𝑦𝑛+1 = 𝑦𝑛 +
𝑡𝑛+1−𝑡𝑛

2
(𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + 𝑓(𝑡𝑛+1, 𝑦(𝑡𝑛+1))).                 (4.8) 
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Again 𝑦(𝑡𝑛)  and   𝑦(𝑡𝑛+1)  are replaced by their approximations  𝑦𝑛  and  𝑦𝑛+1 

respectively and this produces the equation for the implicit one-step Adams–Moulton 

method, which is 

                      𝑦𝑛+1 = 𝑦𝑛 +
𝑡𝑛+1−𝑡𝑛

2
(𝑓(𝑡𝑛, 𝑦𝑛) + 𝑓(𝑡𝑛+1, 𝑦𝑛+1)). 

Diethelm [12] advises that the so-called predictor or preliminary approximation  𝑦𝑛+1
𝑝  is 

similarly obtained by only replacing the trapezoidal quadrature formula in the rectangle 

rule giving the explicit forward Euler method to produce the following formula: 

                     𝑦𝑛+1
𝑝 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛).                                                    (4.9) 

And 

                    𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑓(𝑡𝑛, 𝑦𝑛) + 𝑓(𝑦𝑛+1, 𝑦𝑛+1

𝑝 )),                  (4.10) 

This approach is known as the one-step Adams-Bashforth-Moulton method, 

The convergence order of (4.10) is 2, i.e, 

              max𝑖=1,2,…,𝑁|𝑦(𝑡𝑖) − 𝑦𝑖| = 𝑂(ℎ2).                                         (4.11) 

Where  𝑦(𝑡𝑖)   is an exact solution and  𝑦𝑖  is an approximate solution. 

4.2. Fractional Formulation 

From the classical algorithms it is possible to transfer the essential concepts over to the 

fractional-order problems of courses with some necessary adaptions. The key to 

addressing this application to fractional-order problems is to develop an equation which 

is similar to (4.10) according Diethelm [12] but the equation will be different due to the 

range of integration which now starts at 0 instead of   𝑡𝑘. 
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By using the product trapezoidal quadrature formula to replace the integral, for example 

the nodes 𝑡𝑖{ 𝑖 = 0,1,2, … , 𝑘 + 1} and thus interpret the function (𝑡𝑘+1 − ∙) as a weight 

function for the integral.   By apply the approximation 

∫ (𝑡𝑘+1 − 𝑡)
𝛼−1𝑔(𝑡)𝑑𝑡 ≈ ∫ (𝑡𝑘+1 − 𝑡)

𝛼−1

𝑡𝑘+1

0

𝑡𝑘+1

0

𝑔𝑘+1
∗ (𝑡)𝑑𝑡, 

where  𝑔𝑘+1∗  is the piecewise linear interpolant for 𝑔 with nodes and knots chosen at the  

𝑡 𝑖 , 𝑖 =  0,1,2, . . . , 𝑘 + 1.  From this construction it demonstrates that the weighted 

trapezoidal quadrature formula can be represented as a weighted sum of function values 

of the integrand 𝑔 , taken at the points  𝑡𝑖 . Explicitly, the integral on the right-hand side 

of (4.13) can be expressed as 

        ∫ (𝑡𝑘+1 − 𝑡)
𝛼−1𝑡𝑘+1

0
𝑔𝑘+1
∗ (𝑡)𝑑𝑡 = ∑ 𝑎𝑖,𝑘+1

𝑘+1
𝑖=0 𝑔(𝑡𝑖).                    (4.12) 

Where 

              𝑎𝑖,𝑘+1 = ∫ (𝑡𝑘+1 − 𝑡)
𝛼−1𝑡𝑘+1

0
𝜙𝑖,𝑘+1(𝑡)𝑑𝑡,                                   (4.13) 

 

 

and 

 𝜙𝑖,𝑘+1(𝑡) =    

{
 

 
𝑡−𝑡𝑖−1

𝑡𝑖−𝑡𝑖−1
,             if  𝑡𝑖−1 < 𝑡 ≤ 𝑡𝑖,

𝑡𝑖+1−𝑡

𝑡𝑖+1−𝑡𝑖
,               if 𝑡𝑖  < 𝑡 < 𝑡𝑖+1 ,

0,                                               else .

                               (4.14) 

 

 

This is clear because the functions  𝜙𝑖,𝑘+1 satisfy 

                                                      𝜙𝑖,𝑘+1(𝑡𝜇) =  {
1            if       𝑖 ≠ 𝜇
 0           if        𝑖 = 𝜇

}   

 And that they are continuous and piecewise linear with breakpoints at the nodes 𝑡𝜇,  and 

thus must integrated exactly by the developed formula. 
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An easy explicit calculation produces that, for an arbitrary choice of the 𝑡𝑖, (4.13) and 

(4.14) result in (4.15) 

 𝑎0,𝑘+1 =
(𝑡𝑘+1 − 𝑡1)

𝛼+1 + 𝑡𝑘+1
𝛼 [𝑡1 + 𝑡1 − 𝑡𝑘+1]

𝑡1𝛼(𝛼 + 1)
, 

 𝑎𝑖,𝑘+1 =
(𝑡𝑘+1 − 𝑡𝑖−1)

𝛼+1 + (𝑡𝑘+1 − 𝑡𝑖)
𝛼[𝛼(𝑡𝑖−1 − 𝑡𝑖) + 𝑡𝑖−1 − 𝑡𝑘+1]

(𝑡𝑖 − 𝑡𝑖−1)𝛼(𝛼 + 1)
+ 

    
(𝑡𝑘+1 − 𝑡𝑖+1)

𝛼+1 − (𝑡𝑘+1 − 𝑡𝑖)
𝛼[𝛼(𝑡𝑖 − 𝑡𝑖+1) − 𝑡𝑖+1 + 𝑡𝑘+1)

(𝑡𝑖+1 − 𝑡𝑖)𝛼(𝛼 + 1)
, 1 ≤ 𝑖 ≤ 𝑘, 

         𝑎𝑘+1,𝑘+1 =
(𝑡𝑘+1−𝑡𝑘)

𝛼

𝛼(𝛼+1)
                                                                       (4.15) 

 

The isometric nodes ( 𝑡𝑖  =  𝑖ℎ  with some fixed h) are reduced to the following 

equations.This then provides a factional variant of the one–step Adams–Moulton method 

by providing the correct formula which is 

𝑎𝑖,𝑘+1 =

{
  
 

  
 

ℎ𝛼

𝛼(𝛼+1)
(𝑘𝛼+1 − (𝑘 − 𝛼)(𝑘 + 1)𝛼)     if  𝑖 = 0 

ℎ𝛼

𝛼(𝛼+1)
((𝑘 − 𝑖 + 2)𝛼+1 + (𝑘 − 𝑖)𝛼+1                  

−2(𝑘 − 𝑖 + 1)𝛼+1)                      if   1 ≤ 𝑖 ≤ 𝑘
ℎ𝛼

𝛼(𝛼+1)
                                          if  𝑖 = 𝑘 + 1 

                               (4.16) 

 

 

 

 This then provides a factional variant of the one –step Adams–Moulton method by 

providing the correct formula which is 

 𝑦𝑘+1 = ∑
𝑡𝑘+1
𝑖

𝑖!

𝑚−1
𝑖=0 𝑦0

(𝑖)
+

1

Γ(𝑛)
(∑ 𝑎𝑖,𝑘+1𝑓(𝑡𝑖, 𝑦𝑖

𝑘
𝑖=0 ) + 𝑎𝑘+1,𝑘+1𝑓(𝑡𝑘+1,𝑦𝑘+1

𝑝 )).    (4.17) 

What remains are the resolution of the predictor formula and thus the required calculation 

of the value  𝑦𝑘+1
𝑝 .  The same concept that was utilized to generalize the Adams–Moulton 

technique is applied to the one-step Adams–Bashforth method by replacing the integral 

with the product of rectangle rule 

    ∫ (𝑡𝑘+1 − 𝑡)
𝛼−1𝑔(𝑡)𝑑𝑡 ≈ ∑ 𝑏𝑖,𝑘+1𝑔(𝑡𝑖),

𝑘
𝑖=0

𝑡𝑘+1
0

                                   (4.18) where 
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  𝑏𝑖,𝑘+1 = ∫ (𝑡𝑘+1 − 𝑡)
𝛼−1𝑑𝑡 =

(𝑡𝑘+1−𝑡𝑖)
𝛼−(𝑡𝑘+1−𝑡𝑖+1)

𝛼

𝛼

𝑡𝑖+1
𝑡𝑖

 .                 (4.19) 

Similarly to the method utilized in the equations (4.16)-(4.18) the weight can be 

consequential calculated. Yet there is a requirement to utilize a piecewise constant 

approximation and not a piecewise linear one, and hence there is a requirement to  

        𝑏𝑖,𝑘+1 =
ℎ𝛼

𝛼
((𝑘 + 1 − 𝑖)𝛼 − (𝑘 − 𝑖)𝛼).                                      (4.20) 

Thus, the predictor 𝑦𝑘+1
𝑝

  is determined by the fractional Adams–Bashforth method 

𝑦𝑘+1
𝑝 = ∑

𝑡𝑘+1
𝑖

𝑖!

𝑚−1
𝑖=0 𝑦0

(𝑖)
+

1

Γ(𝑛)
∑ 𝑏𝑖,𝑘+1𝑓(𝑡𝑖
𝑘
𝑖=0 , 𝑦𝑖) ,                            ()  

The fractional Adams–Bashforth–Moulton method, is therefore completed and described 

by the formula expressions (4.21) and (4.17) with the weights 𝑎𝑖,𝑘+1   and   𝑏𝑖,𝑘+1 as 

defined according to (4.15) and (4.20), respectively. 

5 .Conclusion 

This paper has presented the analytical and numerical scheme for the solution of the 

fractional ordinary differential equations by using two numerical methods , Diethelm's 

method and Adams-Bashforth-Moulton method , as numerical methods for approximate 

solutions accordingly of type Liouville-Caputo the methods that are more accurate and 

cost effective in mathematical modelling. Diethelm provides that the error behaves as 

𝑂(ℎ2−𝛼) when using functions that are sufficiently smooth. The method is analysed for 

0 < 𝛼 < 1 . Diethelm provides that the extension to  1 < 𝛼 < 2  should not present 

major difficulty. 
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