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Abstract:  

This article focuses on a coupled system of perturbed resonant nonlinear-Schrödinger equation (NLSE) 

in magneto-optic waveguides. The system incorporates spatio-temporal dispersion (STD), inter-modal 

dispersion (IMD), parabolic-law nonlinearity, and multiplicative noise in the Itô sense. By using the 

improve direct algebraic approach and computer algebraic system such as Maple, various types of 

optical solitons are explored, including dark solitons, bright solitons, straddled solitons, singular 

solitons, as well as solutions based on Jacobi elliptic functions and Weierstrass-elliptic functions. 

Numerical simulations of some solutions are also presented. 

Keywords: Dispersive optical solitons; Resonant nonlinear-Schrödinger equation; Magneto-optic 

waveguides; Multiplicative white noise. 

1. Introduction 

Nonlinear partial differential equations (PDEs) 

play a crucial role in modeling a wide range of 

phenomena across the physical sciences, from 

nonlinear optics to fluid dynamics and plasma 

physics. In recent decades, researchers have 

dedicated significant effort to uncovering 

explicit soliton solutions for these nonlinear 

systems using diverse mathematical 

techniques [1-19]. 

Chief among these models is the nonlinear 

Schrödinger equation (NLSE), which has 

emerged as a cornerstone framework for 

describing the propagation of optical solitons 

and other nonlinear wave behaviors. While the 

classic NLSE has been extensively studied, 

there remains keen interest in exploring 

extensions and generalizations of this 

fundamental equation [1-19]. 

One important consideration is the need to 

incorporate higher-order effects, such as 

spatio-temporal dispersion (STD) and inter-

modal dispersion (IMD), to more accurately 

model the propagation of optical solitons in 

nonlinear media [16-18]. Additionally, when 

examining phenomena like chiral solitons in 

the quantum Hall effect, the inclusion of 

specific resonant terms in the governing 

equation becomes critical [10-18]. 

Building upon this foundation, the present 

work introduces a novel coupled system of 

perturbed resonant NLSE tailored for magneto-

optic waveguides. This system incorporates 

parabolic law nonlinearity, STD, IMD, and 
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multiplicative noise in the Itô sense. The 

details and findings of this investigation are 

presented in the subsequent sections. 

2. Governing model 

The dimensionless form of perturbed resonant 

NLSE in polarization preserving fibers with 

dual power law nonlinearity and both STD, 

IMD having multiplicative white noise in the Itô 

sense is written as [16]: 

𝑖𝜑𝑡 + 𝑎𝜑𝑥𝑥 + 𝑏𝜑𝑥𝑡 + (𝑐|𝜑|
2 + 𝑑|𝜑|4)𝜑 

  +𝛾 (
|𝜑|𝑥𝑥
|𝜑|

)𝜑 + 𝜎(𝜑 − 𝑖𝑏𝜑𝑥)
𝑑𝑊(𝑡)

𝑑𝑡
= 𝑖𝛿𝜑𝑥,        (2.1) 

where  𝜑(𝑥, 𝑡)  is a complex-valued function 

that represents the wave profile,  𝑎,  𝑏 ,  

𝑐,  𝑑,  𝛾,  𝛿  and  𝜎  are real-valued constants 

with  𝑖 = √−1 . The first term in equation (2.1) 

is the linear temporal evolution, the constants  

𝑎  and  𝑏  are the coefficients of chromatic 

dispersion (CD) and STD respectively. Next  𝑐  

and  𝑑  are the coefficient of self-phase 

modulation (SPM), The constant  𝛾  is the 

coefficient of resonant nonlinearity. The 

constant  𝛿  is coefficient of IMD. Finally,  𝜎  is 

the coefficient of noise strength and  𝑊(𝑡)  is 

the standard Wiener process, such that  

𝑑𝑊(𝑡)/𝑑𝑡  is the white noise. 

In birefringent fibers, equation (2.1) splits into 

two components, for the first time, as:                        
𝑖𝑢𝑡 + 𝑎1𝑢𝑥𝑥 + 𝑏1𝑢𝑥𝑡 + (𝑐1|𝑢|

2 + 𝑑1|𝑣|
2)𝑢 + (𝑒1|𝑢|

4 

+𝑓1|𝑢|
2|𝑣|2 + 𝑔1|𝑣|

4)𝑢 + +ℎ1 (
|𝑢|𝑥𝑥
|𝑢|

) 𝑢 + 

𝜎(𝑢 − 𝑖𝑏1𝑢𝑥)
𝑑𝑊(𝑡)

𝑑𝑡
= 𝑄1𝑣 + 𝑖[𝜆1𝑢𝑥 + 𝜇1(|𝑢|

2𝑢)𝑥 

+𝜃1(|𝑢|
2)𝑥𝑢 + 𝑟1|𝑢|

2𝑢𝑥],                (2.2) 

And 

𝑖𝑣𝑡 + 𝑎2𝑣𝑥𝑥 + 𝑏2𝑣𝑥𝑡 + (𝑐2|𝑣|
2 + 𝑑2|𝑢|

2)𝑣 + (𝑒2|𝑣|
4 

+𝑓2|𝑣|
2|𝑢|2 + 𝑔2|𝑢|

4)𝑣 + ℎ2 (
|𝑣|𝑥𝑥
|𝑣|

) 𝑣 

+𝜎(𝑣 − 𝑖𝑏2𝑣𝑥)
𝑑𝑊(𝑡)

𝑑𝑡
= 𝑄2𝑢 + 𝑖[𝜆2𝑣𝑥 + 𝜇2(|𝑣|

2𝑣)𝑥 

+𝜃2(|𝑣|
2)𝑥𝑣 + 𝑟2|𝑣|

2𝑣𝑥],            (2.3) 

where  𝑢(𝑥, 𝑡)  and  𝑣(𝑥, 𝑡)  are complex-valued 

functions that represent the wave profiles. The 

constants  𝑎𝑗  and  𝑏𝑗   (𝑗 = 1,2)  are the 

coefficients of CD and STD in the directions of  

𝑥  and  𝑦  respectively. The constants  𝑐𝑗  and  

𝑑𝑗 ,   (𝑗 = 1,2)  are the coefficients of SPM and 

cross-phase modulation (XPM) respectively. 

The constants  𝑒𝑗 ,  𝑓𝑗  and  𝑔𝑗 ,   (𝑗 = 1,2)  are the 

coefficients of nonlinear dispersion terms. The 

constants  ℎ𝑗 ,   (𝑗 = 1,2)  are the coefficients of 

resonant nonlinearity. The constants  𝜎𝑗 ,   (𝑗 =

1,2)  are the coefficients of noises strength and  

𝑊(𝑡)   is the standard Wiener processes, such 

that  𝑑𝑊(𝑡)/𝑑𝑡  is the white noises. Finally, the 

constants  𝜆𝑗 ,  𝜇𝑗 ,  𝜃𝑗  and  𝜐𝑗 ,   (𝑗 = 1,2)  are the 

coefficients of the IMD, self-steepening (SS) 

terms and nonlinear dispersions terms 

respectively. 

This article aims to deduce the soliton 

solutions for equations (2.2) and (2.3) using 

the enhanced direct algebraic method. 

3. Wave Transformation and Mathematical 

Analysis   

In order to solve equations (2.2) and (2.3), we 

suppose that the wave profiles have the 

following forms: 

𝑢(𝑥, 𝑡) = 𝜑1(𝜉) 𝑒𝑥𝑝[𝑖(𝜓(𝑥, 𝑡) + 𝜎𝑊(𝑡) − 𝜎
2𝑡)] ,   (3.1) 

𝑣(𝑥, 𝑡) = 𝜑2(𝜉) 𝑒𝑥𝑝[𝑖(𝜓(𝑥, 𝑡) + 𝜎𝑊(𝑡) − 𝜎
2𝑡)] , (3.2) 

   𝜉 = 𝑥 − 𝜌𝑡, 𝜓(𝑥, 𝑡) = −𝜅𝑥 + 𝜔𝑡,                         (3.3) 

where  𝜅 ,  𝜔  and  𝜌  are nonzero real-valued 

constants such that  𝜅  is the frequency of the 

soliton,  𝜔  is the wave number and  𝜌  is the 

velocity soliton. The functions  𝜑𝑗(𝜉)  for  𝑗 = 1,2  

are real functions which represent the 

amplitude portions of the solitons and the 

phase components of the solitons, respectively. 

Inserting (3.1) and (3.2) into equations (2.2) 

and (2.3) gives the real parts: 

(−𝜌𝑏1 + 𝑎1 + ℎ1)𝜑1
′′ + [𝑐1 − 𝜅(𝑟1 + 𝜇1)]𝜑1

3 + 𝑓1𝜑2
2𝜑1

3 

+𝑑1𝜑2
2𝜑1 + 𝑒1𝜑1

5 + 𝑔1𝜑2
4𝜑1 + [−𝜅

2𝑎1 + 𝜅((−𝜎
2 

+𝜔)𝑏1 − 𝜆1) + 𝜎
2 − 𝜔]𝜑1 − 𝜑2𝑄1 = 0                   (3.4) 

And 

(−𝜌𝑏2 + 𝑎2 + ℎ2)𝜑2
′′ + [𝑐2 − 𝜅(𝑟2 + 𝜇2)]𝜑2

3 + 𝑓2𝜑1
2𝜑2

3 

+𝑑2𝜑1
2𝜑2 + 𝑒2𝜑2

5 + 𝑔2𝜑1
4𝜑2 + [−𝜅

2𝑎2 + 𝜅((−𝜎
2 

+𝜔)𝑏2 − 𝜆2) + 𝜎
2 − 𝜔]𝜑2 − 𝜑1𝑄2 = 0          (3.5) 

while the imaginary parts are: 

[3𝜇1 + 2𝜃1 + 𝑟1]𝜑1
′ 𝜑1

2 + [(−𝜌𝑏1 + 2𝑎1)𝜅 + (𝜎
2 − 𝜔)𝑏1 
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+𝜆1 + 𝜌]𝜑1
′ = 0,                                                        (3.6)   

And 

[3𝜇2 + 2𝜃2 + 𝑟2]𝜑2
′ 𝜑2

2 + [(−𝜌𝑏2 + 2𝑎2)𝜅 + (𝜎
2 − 

-𝜔)𝑏2+𝜆2 + 𝜌]𝜑2
′ = 0,                                             (3.7)   

The linearly independent principle is applied 

on (3.6) and (3.7) to get the wave number  𝜌  :  

𝜌 =
(𝜎2 − 𝜔)𝑏𝑗 + 2𝑎𝑗𝜅 + 𝜆𝑗

𝜅𝑏𝑗 − 1
,                                  (3.8) 

and  

3𝜇𝑗 + 2𝜃𝑗 + 𝑟𝑗 = 0, 

provided  𝜅𝑏𝑗 ≠ 1  where  𝑗 = 1,2.  

Now, let us set 

𝜑2 = Z𝜑1,                                                                      (3.9) 

where  Z  is a nonzero constant, such that        

Z ≠ 1.  equations (3.4) and (3.5) can be reduced 

as: 

(−𝜌𝑏1 + 𝑎1 + ℎ1)𝜑1
′′ + (Z2𝑓1 + Z

4𝑔1 + 𝑒1)𝜑1
5 

+[Z2𝑑1 − (𝑟1 + 𝜇1)𝜅 + 𝑐1]𝜑1
3 − [𝜅2𝑎1 + ((𝜎

2 −𝜔)𝑏1 

+𝜆1)𝜅 + Z𝑄1 − 𝜎
2 + 𝜔]𝜑1 = 0                                (3.10) 

and  

Z(−𝜌𝑏2 + 𝑎2 + ℎ2)𝜑1
′′ + (Z3𝑓2 + Z

5𝑒2 + Z𝑔2)𝜑1
5 

+[((−𝑟2 − 𝜇2)𝜅 + 𝑐2)Z
3 + Z𝑑2]𝜑1

3 − [Z(𝜅2𝑎2 + ((𝜎
2 

−𝜔)𝑏2 + 𝜆2)𝜅 + 𝜔 − 𝜎
2) + 𝑄2]𝜑1 = 0               (3.11) 

equations (3.11) and (3.12) are equivalent 

under the constraint conditions: 

−𝜌𝑏1 + 𝑎1 + ℎ1 = Z(−𝜌𝑏2 + 𝑎2 + ℎ2), 

Z2𝑓1 + Z
4𝑔1 + 𝑒1 = Z(Z

2𝑓2 + Z
4𝑒2 + 𝑔2), 

Z2𝑑1 − (𝑟1 + 𝜇1)𝜅 + 𝑐1 

= Z[((−𝑟2 − 𝜇2)𝜅 + 𝑐2)Z
2 + 𝑑2], 

𝜅2𝑎1 + ((𝜎
2 −𝜔)𝑏1 + 𝜆1)𝜅 + Z𝑄1 − 𝜎

2 + 𝜔 

= Z[𝜅2𝑎2 + (1 + (𝜎
2 − 𝜔)𝑏2 + 𝜆2)𝜅 + 𝜔 − 𝜎

2] + 𝑄2. 

(3.12) 

From (3.12), the soliton velocity is yielded as: 

𝜔 =

[
𝑄 + 𝜎2 − 𝜅(𝜆1 + 𝜎

2𝑏1) − Z𝑄1 + Z[−𝜎
2

𝜅(𝜆2 + 𝜎
2𝑏2) + 𝜅

2𝑎2] − 𝜅
2𝑎1

]

−𝜅𝑏1 + Z(𝜅𝑏2 − 1) + 1
, (3.13) 

provided−𝜅𝑏1 + Z(𝜅𝑏2 − 1) + 1 ≠ 0.  

In order to solve equation (3.10), it can be 

rewritten as follows: 

𝜑1
′′ + 𝑙1𝜑1 + 𝑙2𝜑1

3 + 𝑙3𝜑1
5 = 0,                                   (3.14) 

where 

𝑙1 =
−[𝜅2𝑎1 + ((𝜎

2 −𝜔)𝑏1 + 𝜆1)𝜅 + Z𝑄1 − 𝜎
2 + 𝜔]

−𝜌𝑏1 + 𝑎1 + ℎ1
, 

𝑙2 =
Z2𝑑1 − (𝑟1 + 𝜇1)𝜅 + 𝑐1

−𝜌𝑏1 + 𝑎1 + ℎ1
, 

𝑙3 =
Z2𝑓1 + Z

4𝑔1 + 𝑒1
−𝜌𝑏1 + 𝑎1 + ℎ1

,                                            ( 3.15)   

provided−𝜌𝑏1 + 𝑎1 + ℎ1 ≠ 0. 

In the following section, we will discover the 

optical solitons of equations (2.1) and utilizing 

the well-known enhanced direct algebraic 

method. 

4. An improve direct algebraic approach      

Let us now, solve equation (3.14) under the 

constraint conditions (3.15) as follows: 

First, balancing  𝜑1
′′(𝜉)  and  𝜑1

5(𝜉)  in equation 

(3.14) gives  𝑁 =   
1

2
 . Therefore, the new wave 

transformation: 

𝜑1 = [𝐻(𝜉)]
1
2,                                                            (4.1)     

where  𝐻(𝜉)  is a new function of   𝜉 , such that  

𝐻(𝜉) > 0 , changes equation (3.14) to the 

following new nonlinear ODE: 

2𝐻𝐻″ −𝐻′2 + 4𝐻2(𝑙3𝐻
2 + 𝑙2𝐻 + 𝑙1) = 0.)          (4.2)   

The improve direct algebraic approach 

introduced by Arnous et al. [19] supposes that 

equation (4.2) has the following formal 

solution: 

𝐻(𝜉) = ∑𝐴𝑘𝜓
𝑘(𝜉),                                                   (4.3)

𝑁

𝑘=0

 

where  𝐴0,  𝐴𝑘   (𝑘 = 1,2, . . . , 𝑁)  are constants 

such that  𝐴𝑁 ≠ 0 . While the function  𝜓(𝜉)  

holds the nonlinear ODE: 
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𝜓′2(𝜉) =∑𝜏𝑗𝜓
𝑗(𝜉),

4

𝑗=0

                                                   (4.4) 

where  𝜏𝑗 (𝑗 = 0,  1,  2,  3,  4)  are constants 

provided  𝜏4 ≠ 0 . It is well-known [19] that 

equation (4.4) has many types of exact 

solutions. 

Now, balancing the terms  𝐻𝐻″  and  𝐻4  in 

equation (4.4), yields the balance number  𝑁 =

1 . Consequently, the formula solution (4.2) 

takes the following form: 

𝐻(𝜉) = 𝐴0 + 𝐴1𝜓(𝜉),                                                   (4.5) 

where  𝐴1 ≠ 0 . 

By evaluating (4.5) along with (4.4) into 

equation (4.2) and utilizing Maple, there are 

many families of results that will be discussed 

as follows: 

Family-1. When  𝜏0 = 𝜏1 = 𝜏3 = 0,  we have the 

following results: 

Result 1. 

𝐴0 = 0, 𝐴1 = √−
3𝜏4
4𝑙3

,  𝑙1 = −
𝜏2
4
, 𝑙2 = 0,            (4.6) 

provided  𝑙3𝜏4 < 0.  

By substituting (4.6) with the well-known 

solutions of equation (4.4) mentioned in [19] 

into (4.5) and using (4.1) as well as (3.1), (3.2), 

two types of soliton solutions can be derived as 

follows: 

I. If  𝜏2 > 0  and  𝜏4 < 0 , then we have the 

bright soliton solutions 

𝑢(𝑥, 𝑡) = {√
3𝜏2
4𝑙3

𝑠𝑒𝑐ℎ(√𝜏2𝜉)}

1
2

 

                × 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                  (4.7) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                          (4.8) 

provided  𝑙3 > 0.  

 

)a) 

 

(b) 

 

(c) 
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(d) 

Figure 1. shows the numerical solution (4.7) in 

3D and 2D plots  with : 𝜏2 = 1, 𝑙3 = 𝜅 = 𝜔 = 1,   

𝑊(𝑡) = √𝑡  and the white noise coefficient 𝜎  are 

shown in graphs (a)-(d). 

II. If  𝜏2 > 0  and  𝜏4 > 0 , then we have the 

singular soliton solutions  

𝑢(𝑥, 𝑡) = {√−
3𝜏2
4𝑙3

𝑐𝑠𝑐ℎ(√𝜏2𝜉)}

1
2

 

    × 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                            (4.9) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.10) 

provided  𝑙3 < 0.  

Result 2.  

𝐴0 = √
3𝜏2
4𝑙3

, 𝐴1 = √−
3𝜏4
4𝑙3

,  𝑙1 =
5𝜏2
4
,  

      𝑙2 = −√
16𝜏2𝑙3
3

.                                                        (4.11) 

This result leads to the bright soliton solutions 

𝑢(𝑥, 𝑡) = {√
3𝜏2
4𝑙3

(1 + 𝑠𝑒𝑐ℎ(√𝜏2𝜉))}

1
2

 

× 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                            (4.12 ) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.13) 

provided  𝜏2 > 0 ,  𝜏4 < 0  and  𝑙3 > 0.  

Family-2. When  𝜏0 =
𝜏2
2

4𝑙4
,  𝜏1 = 𝜏3 = 0, 𝜏2 < 0  

and  𝜏4 > 0 , we have the following result: 

 

𝐴0 = √
3𝜏2
8𝑙3

, 𝐴1 = √−
3𝜏4
4𝑙3

, 𝑙1 =
𝜏2
2
, 

     𝑙2 = −√
8𝜏2𝑙3
3

,                                                    (4.14) 

provided  𝑙3 < 0.  

By substituting (4.14) with the well-known 

solutions of equation (4.4) mentioned in [19] 

into (4.5) and using (4.1) as well as (3.1), (3.2), 

we obtain the dark soliton solutions: 

𝑢(𝑥, 𝑡) = {√
3𝜏2
8𝑙3

(1 + 𝑡𝑎𝑛ℎ (√−
𝜏2
2
𝜉))}

1
2

 

× 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                             (4.15) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                       (4.16) 

and the singular soliton solutions 

𝑢(𝑥, 𝑡) = {√
3𝜏2
8𝑙3

(1 + 𝑐𝑜𝑡ℎ (√−
𝜏2
2
𝜉))}

1
2

 

× 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                               (4.17) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.18) 

Family-3. When  𝜏1 = 𝜏3 = 0, 𝜏0 =
𝑚2(1−𝑚2)𝜏2

2

(2𝑚2−1)2𝜏4
,   

𝜏2 > 0 ,  𝜏4 < 0  and  0 < 𝑚 < 1 , we have the 

following result: 

𝑚 = 1, 𝐴0 = 0, 𝐴1 = √−
3𝜏4
4𝑙3

,  𝑙1 = −
𝜏2
4
, 

 𝑙2 = 0,                                                                          (4.19) 

Provided:𝑙3 < 0.  

By substituting (4.19) with the well-known 

solutions of equation (4.4) mentioned in [19] 

into (4.5) and using (4.1) as well as (3.1), (3.2), 

we have the same bright-soliton solutions (4.9) 

Family-4. When  𝜏1 = 𝜏3 = 0, 𝜏0 =
𝑚2
2𝜏2
2

(𝑚2+1)2𝜏4
,   

 𝜏2 < 0 ,  𝜏4 > 0  and  0 < 𝑚 < 1 , we have the 

following result: 

𝐴0 = −
2𝑚2𝜏2

𝑙2(𝑚
2 + 1)

, 𝐴1 = √−
4𝜏2𝜏4𝑚

2

𝑙2
2(𝑚2 + 1)

,  

𝑙1 =
𝜏2(5𝑚

2 − 1)

4𝑚2 + 4
, 𝑙3 =

3𝑙2
2(𝑚2 + 1)

16𝑚2𝜏2
.                (4.20) 

By substituting (4.20) with the well-known 

solutions of equation (4.4) mentioned in [19] 
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into (4.5) and using (4.1) as well as (3.1), (3.2), 

we have the Jacobi elliptic function solutions: 

𝑢(𝑥, 𝑡) = {−
2𝑚2𝜏2

𝑙2(𝑚
2 + 1)

(1

+ 𝐽𝑎𝑐𝑜𝑏𝑖𝑆𝑁 (√−
𝜏2

𝑚2 + 1
,𝑚))}

1
2

 

   × 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                           (4.21) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.22) 

 

Remark  In particular, if  𝑚 = 1 , the Jacobi 

elliptic function solutions (4.21) and (4.22) can 

be converted to the dark solitons 

𝑢(𝑥, 𝑡) = {−
𝜏2
𝑙2
(1 + 𝑡𝑎𝑛ℎ(√−

𝜏2
2
))}

1
2

 

× 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                               (4.23) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.24) 

 

(e) 

 

(f) 

 

 

(g) 

 

(h) 

Figure 2. shows the numerical solution (4.23) 

in 3D and 2D plots  with : 𝜏2 = −1, 𝑙3 = 𝜅 = 𝜔 =

1, 𝑊(𝑡) = √𝑡 and the white noise coefficient 𝜎  

are shown in graphs (a)-(d). 

 

Family-5. When  𝜏1 = 𝜏3 = 0, 𝜏0 > 0  and  𝜏4 > 0  

we have the following result: 

𝐴0 =
2√𝜏0𝜏4

𝑙2
,  𝐴1 =

2𝜏0

1
4𝜏4

3
4

𝑙2
,  𝑙1 = −√𝜏0𝜏4, 

   𝑙3 = −
3𝑙2
2

16√𝜏0𝜏4
, 𝜏2 = −2√𝜏0𝜏4,                            (4.25) 

By substituting (4.25) with the well-known 

solutions of equation (4.4) mentioned in [19] 

into (4.5) and using (4.1) as well as (3.1), (3.2), 

we have the Weierstrass-elliptic function 

solutions:  

𝑢(𝑥, 𝑡)  = {
2(𝜏0𝜏4)

1
4

𝑙2
((𝜏0𝜏4)

1
4 
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+
3℘′ (𝜉;

𝜏2
2

12
+ 𝜏0𝜏4,

𝜏2(36𝜏0𝜏4 − 𝜏2
2)

216
)

6℘(𝜉;
𝜏2
2

12
+ 𝜏0𝜏4,

𝜏2(36𝜏0𝜏4 − 𝜏2
2)

216
) + 𝜏2

)}

1
2

   

×  𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                              (4.26) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.27) 

and 

𝑢(𝑥, 𝑡)  = {
2√𝜏0𝜏4

𝑙2
(1 

+
6(𝜏0𝜏4)

1
4℘(𝜉;

𝜏2
2

12
+ 𝜏0𝜏4,

𝜏2(36𝜏0𝜏4 − 𝜏2
2)

216
) + 𝜏2

3℘′ (𝜉;
𝜏2
2

12
+ 𝜏0𝜏4,

𝜏2(36𝜏0𝜏4 − 𝜏2
2)

216
)

)}

1
2

   

×  𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                              (4.28) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.29) 

Family-6. When  𝜏0 = 𝜏1 = 0  and  𝜏2 > 0,  we 

have the following result: 

𝐴0 = 0, 𝐴1 = √−
3𝜏4
4𝑙3

,  𝑙1 = −
𝜏2
4
,  

     𝑙2 = 𝜏3√−
𝑙3
3𝜏4

,                                                        (4.30) 

provided  𝑙3𝜏4 < 0.  

By substituting (4.30) with the well-known 

solutions of equation (4.4) mentioned in [19] 

into (4.5) and using (4.1) as well as (3.1), (3.2), 

many types of straddled soliton solutions can 

be derived as follows: 

𝑢(𝑥, 𝑡) = {−√−
3𝜏4
𝑙3
(

𝜏2 𝑠𝑒𝑐ℎ
2 (√

𝜏2𝜉
2
)

4√𝜏2𝜏4 𝑡𝑎𝑛ℎ (
√𝜏2𝜉
2
) + 2𝜏3

)}

1
2

 

× 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                             (4.31) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.32) 

𝑢(𝑥, 𝑡) = {√−
3𝜏4
𝑙3
(

𝜏2 𝑐𝑠𝑐ℎ
2 (√

𝜏2𝜉
2
)

4√𝜏2𝜏4 𝑐𝑜𝑡ℎ (
√𝜏2𝜉
2
) + 2𝜏3

)}

1
2

 

× 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                             (4.33) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.34) 

𝑢(𝑥, 𝑡)

=

{
 
 

 
 

√−
3𝜏4
𝑙3

(

 
 
−

𝜏2𝜏3 𝑠𝑒𝑐ℎ
2 (√

𝜏2𝜉
2
)

2𝜏3
2 − 2𝜏2𝜏4 (1 − 𝑡𝑎𝑛ℎ (

√𝜏2𝜉
2
))

2

)

 
 

}
 
 

 
 

1
2

 

× 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                             (4.35) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.36) 

and  

𝑢(𝑥, 𝑡)

=

{
 
 

 
 

√−
3𝜏4
𝑙3

(

 
 𝜏2𝜏3 𝑐𝑠𝑐ℎ

2 (√
𝜏2𝜉
2
)

2𝜏3
2 − 2𝜏2𝜏4 (1 − 𝑐𝑜𝑡ℎ (

√𝜏2𝜉
2
))

2

)

 
 

}
 
 

 
 

1
2

 

× 𝑒𝑖[−𝜅𝑥+(𝜔−𝜎
2)𝑡+𝜎𝑊(𝑡)],                                             (4.37) 

𝑣(𝑥, 𝑡) = Z𝑢(𝑥, 𝑡),                                                         (4.38) 

5. Conclusions 
 
The well-known improve direct algebraic 

approach have been employed to find the 

optical-solitons of the coupled system of 

perturbed resonant NLSE in magneto-optic 

waveguides with STD, IMD, parabolic law 

nonlinearity, and multiplicative noise in the Itô 

sense. Dark solitons, bright solitons, singular 

solitons, straddled solitons, Jacobi-elliptic 

functions solutions and Weierstrass-elliptic 

functions solutions are reported for the first 

time. Figures 1 and 2 have presented the 

numerical simulations of solutions (4.7) and 

(4.23) with no noises as well as at 𝜎 = 0 and 

𝜎 = 1. In these figures, when the noise 

vanishes, we note that the surface is less 

planer, while when the noise increases, we 

note that surface becomes more planer after 

small transit behaviors. This means the 

multiplicative noise effects on the solutions 

and it makes the solutions stable. Finally, this 

study has concluded that the noise effect 

(noise strength) on the soliton solutions has a 

significant effect. 

[1]  W. B. Rabie, H. M. Ahmed and W. Hamdy, 

Exploration of new optical solitons in 

magneto-optical waveguide with coupled 

system of nonlinear Biswas--Milovic 

equation via Kudryashov's law using 

extended F-expansion method. 

Mathematics, 11 (2023) 300. 



Optical-Solitons in Magneto-Optic                                                                           Hasek  et  al.  

ICSELibya-2024 213 

 

[2]  E. M.E. Zayed, K. A.E. Alurrfi, R. A. 

Alshbear, On application of the new 

mapping method to magneto-optic 

waveguides having Kudryashov's law of 

refractive index, Optik, 287 (2023) 171072. 

[3] S. Arshed, A. Arif, Soliton solutions of 

higher-order nonlinear Schrödinger 

equation (NLSE) and nonlinear 

Kudryashov's equation, Optik 209 

(2020)164588. 

[4]  E. M. Zayed, M. E. Alngar, A. Biswas, M. 

Asma, M. Ekici, A. K. Alzahrani and M. R. 

Belic, Solitons in magneto-optic 

waveguides with Kudryashov's law of 

refractive index, Chaos, Solitons and 

Fractals, 140 (2020) 110129. 

[5]  A. Biswas, A. H. Arnous, M. Ekici, A. 

Sonmezoglu, A. R. Seadawy, Q. Zhou, et al, 

Optical soliton perturbation in magneto-

optic waveguides, J. Nonlinear Opt. Phys. 

Mater, 27 (2018) 1850005. 

[6]  M. I. Asjad, N. Ullah, H. U. Rehman and M. 

Inc, Construction of optical solitons of 

magneto-optic waveguides with anti-cubic 

law nonlinearity, Optical and Quantum 

Electronics, 53 (2021) 646. 

[7]  A. Biswas, M. Ekici, A. Sonmezoglu, M. R. 

Belic, Highly dispersive optical solitons 

with Kerr law nonlinearity by F-expansion, 

Optik, 181 (2019) 1028-1038. 

[8]  N.A. Kudryashov, Highly dispersive solitary 

wave solutions of perturbed nonlinear 

Schrödinger equations, Appl. Math. 

Comput. 371 (2020) 124972. 

[9]  N.A. Kudryashov, Solitary wave solutions of 

hierarchy with non-local nonlinearity, 

Appl. Math. Lett. 103 (2020) 106155. 

[10] S. Khan, Stochastic perturbation of optical 

solitons having generalized anti-cubic 

nonlinearity with bandpass lters and 

multi-photon absorption, Optik 200 (2020) 

163405. 

[11] M. Eslami, M. Mirzazadeh, B.F. Vajargah, 

A. Biswas, Optical solitons for the resonant 

nonlinear Schrödinger's equation with 

time-dependent coefficients by the first 

integral method, Optik, 125 (2014) 3107-

3116. 

[12]   A. Biswas, Soliton solutions of the 

perturbed resonant nonlinear 

Schrödinger's equation with full 

nonlinearity by semi-inverse variational 

principle, Quant. Phys. Lett., 1 (2012) 79-

84. 

[13] H. Triki, T. Hayat, O.M. Aldossary, A. 

Biswas, Bright and dark solitons for the 

resonant nonlinear Schrödinger's equation 

with time-dependent coefficients, Opt. 

Laser Technol., 44 (2012) 2223-2231. 

[14] M. Mirzazadeh, M. Eslami, D. Milovic, A. 

Biswas, Topological solitons of resonant 

nonlinear Schödinger's equation with dual 

power law nonlinearity by  (𝐺 ′/𝐺) -

expansion technique, Optik, 125 (2014) 

5480-5489. 

[15] H. Triki, A. Yildirim, T. Hayat, O.M. 

Aldossary, A. Biswas, 1-Soliton solution of 

the generalized resonant nonlinear 

dispersive Schrödinger's equation with 

time-dependent coefficients, Adv. Sci. Lett., 

16 (2012) 309-312. 

[16] E. M. E. Zayed, M. E. M. Alngar, R. M. A. 

Shohib, Dispersive optical solitons to 

stochastic resonant NLSE with both 

spatio-temporal and inter-modal 

dispersions having multiplicative white 

noise, Mathematics, 10 (2022), 3197. 

[17] E. M. E. Zayed, R. M. A. Shohib, Solitons 

and other solutions to the resonant 

nonlinear Schödinger equation with both 

spatio temporal and inter-modal 

dispersions using different techniques. 

Optik 158 (2018) 970-984. 

[18] Q. Zhou, C. Wei, H. Zhang, J. Lu, H. Yu, 

P. Yaq, Q. Zhu, Exact solutions to the 

resonant nonlinear Schödinger equation 

with both spatio-temporal and inter-modal 

dispersions. Proc. Rom. Acad. A 2016, 17, 

307-313. 

[19] A. H. Arnous, M. S. Hashemi, K. S. Nisar, 

M. Shakeel, J. Ahmad, I. Ahmad, R. Jan, 

A. Ali, M. Kapoor, N. A. Shah, Investigating 

solitary wave solutions with enhanced 

algebraic method for new extended 

Sakovich equations in fluid dynamics. 

Results in Physics, 57 (2024) 107369 


