

The 3RD Scientific International Conference in Engineering & Science

http://bwu.edu.ly/icse2024
Received 25/07/2024 Revised 23/08/2 Revised 23/08/2024 Published 10/09/2024 **icse@bwu.edu.ly**

New Results on Investigated Integral Representation and Convolution Characterization and Differential Subordination for Univalent Functions

Eman Khleifa Shmella ¹ Aisha Ahmed Amer²

¹Mathematics Dept-Faculty of Science, Zliten - Alasmarya Islamic University, Libya

²Mathematics Dept-Faculty of Sciences , Khoms- El Mergib University ,Libya

¹aymankhlyfh272@gmail.com ² aisha.amer@elmergib.edu.ly

--

Abstract: In this work, we are investigated integral representation and Convolution characterization and Results of Differential Subordination for functions belong to $\mathcal{R}_{\theta}(\psi)$ by introduce generalized derivative operator ,where $\mathcal{R}_{\theta}(\psi)$ denote to the class of all analytic normalized functions in \mathbb{U} .

Keywords: differential subordination, Integral Representation, normalized functions.

1. Introduction

Let f denote of the analytic functions in the class \mathcal{A} [\[1\]](#page-6-0) of the form :

$$
f(z) = z + \sum_{k=2}^{\infty} a_k z^k \quad (z \in \mathbb{U}) \quad (1)
$$

in the open unit disk $\mathbb{U} = \{z : |z| < 1; z \in \mathbb{C}\}\,$, where a_k is a complex number .and denote $\mathcal S$ the subclass of \mathcal{A} in U where S consisting of univalent functions and let the familiar subclass $\mathcal C$ of $\mathcal S$ whose members are convex functions in $\mathbb U$.

Now, let $\mathcal M$ denote the class of analytic functions $\psi(z)$ in U, normalized by $|\psi(z)| \leq 1$ and $\psi(0) = 1$. all univalent functions $\pmb{\psi}$ belong to the subclass $\pmb{\mathcal{N}}$ of $\pmb{\mathcal{M}}$ for which $\psi(\mathbb{U})$ is a convex domain.

Now , denote by \boldsymbol{p} the well –known class of analytic functions $p(z)$ $\forall z \in \mathbb{U}$ with

$$
Re(p(z)) > 0 \quad and \quad p(0) = 1.
$$

And denote by \overline{B} the class of analytic functions $\omega(z)$ in $\mathbb{U} \forall z \in \mathbb{U}$ with [\[1\]](#page-6-0) $|\omega(z)| < 1$ and $\omega(0) = 0$.

Recently, Silverman and Silvia [\[2\]](#page-6-1)considered the following class of functions:

$$
\mathcal{L}_{\theta} = \left\{ f \colon f \in \mathcal{A} \text{ and } Re \left(f'(z) + \frac{1 + e^{i\theta}}{2} z f''(z) \right) > 0 \right\},\
$$

where $\theta \in (-\pi, \pi]$ If $b \to \infty$ for this class of functions ,they obtained extreme points and

convolution characterizations .[\[3\]](#page-6-2),on the other hand , studied the function class $\mathcal{L} \mathcal{P}$ a given by

$$
\mathcal{L}\mathcal{p}_{\theta} = \left\{ f \colon f \in \mathcal{A} \text{ and } f'(z) + \frac{1 + e^{i\theta}}{2} z f''(z) \prec \mathcal{Q}(z) \right\},\
$$

where $\theta \in (-\pi, \pi]$. The function $Q(z)$ $\forall z \in \mathbb{U}$ where $O(0) = 1$ and

$$
Q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2, \rightarrow (2)
$$

maps onto the domain given by

$$
\Omega = \{ w : w \in \mathbb{C} \text{ and } |w-1| < Re(w) \}.
$$

Now , if the function f and g are analytic in **U** , then we say f is subordinate to g in **U**, written as $f \leq g$ if there is a Schwarz function $v(z)$ analytic in U, with $|v(z)| < 1$, so that $f(z) = g(v(z))$; $z \in \mathbb{U}$.

Furthermore , If the function \boldsymbol{g} is univalent in **U** then the subordination $f(z) \leq g(z)$ is equivalent to

$$
f(0) = g(0)
$$
 and $f(\mathbb{U}) = g(\mathbb{U})$ [4].

The Hadamard product of two analytic functions \int and \int denoted by $\int f * g$, where

 $f(z)$ of the form (1) *and*

$$
g(z) = z + \sum_{k=2}^{\infty} b_k z^k; \ (z \in \mathbb{U})_{, \text{is}}
$$

defined by

$$
(f * g)(z) = f(z) * g(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.
$$

In light of product, Amer and Darus [\[5\]](#page-6-4) they have recently introduced a new generalized derivative operator**.**

Definition 1:

For $f \in \mathcal{A}$ the operator $I^m(\lambda_1, \lambda_2, \ell, n)$ is defined by $I^m \lambda_1, \lambda_2, \ell, n$: $\mathcal{A} \rightarrow \mathcal{A}$

$$
I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z)=\varphi^{m}(\lambda_{1},\lambda_{2},\ell)(z)*R^{n}f(z),
$$

where $\lambda_2 \geq \lambda_1 \geq 0$, $\ell \geq 0$ and $m \in N_0 = \{0, 1, 2, \dots\}$ and $R^n f(z)$

denotes the Ruseheweyh derivative operator all $z \in \mathbb{U}$ and given by

$$
R^{n}f(z) = z + \sum_{k=2}^{\infty} c(n,k) a_{k}b_{k}z^{k},
$$

where $c(n, k) = \frac{(n+1)_{k-1}}{(1)_{k-1}}$ and $n \in N_0$.

If $f(z)$ given by (1), then we easily find from $I^m(\lambda_1, \lambda_2, \ell, n) f(z) = \varphi^m(\lambda_1, \lambda_2, \ell)(z) * R^n f(z)$

That

$$
I^{m}(\lambda_{1}, \lambda_{2}, \ell, n) f(z) = z +
$$

$$
\sum_{k=2}^{\infty} \frac{(1 + \lambda_{1}(k-1) + \ell)^{m-1}}{(1 + \ell)^{m-1}(1 + \lambda_{2}(k-1))^{m}} c(n, k) a_{k} z^{k}
$$

*,*where

$$
n, m \in N_0 = \{0, 1, 2, \dots\} \text{ and } \lambda_2 \ge \lambda_1 \ge 0.
$$
\n
$$
\ell > 0.
$$

Using simple computation one obtains the next result

$$
\begin{aligned} & (\ell+1)I^{m+1}(\lambda_1,\lambda_2,\ell,n)f(z) \\ &= (1+\ell-\lambda_1)(I^m(\lambda_1,\lambda_2,\ell,n)*\varphi^1(\lambda_1,\lambda_2,\ell)(z))f(z) \\ &+ \lambda_1 z \Big(I^m\big(\lambda_1,\lambda_2,\ell,n\big)*\varphi^1(\lambda_1,\lambda_2,\ell)f(z) \Big)', \rightarrow (3) \end{aligned}
$$

where $\varphi^1(\lambda_1, \lambda_2, \ell)(z)$ analytic function given by

New Results on Investigated Integral Representation and Convolution Characterization………………… Eman Khleifa

$$
\varphi^1(\lambda_1, \lambda_2, \ell)(z) = z + \sum_{k=2}^{\infty} \frac{1}{\left(1 + \lambda_2(k-1)\right)} z^k. \to (4)
$$

Now, from equation (2) and (4),we have

$$
\left(I^{m}(\lambda_{1},\lambda_{2},\ell,n)*\varphi^{1}(\lambda_{1},\lambda_{2},\ell)f(z)\right)' =
$$
\n
$$
\left(\left(z+\sum_{k=2}^{\infty}\frac{(1+\lambda_{1}(k-1)+\ell)^{m-1}}{(1+\ell)^{m-1}(1+\lambda_{2}(k-1))^{m}}c(n,k)a_{k}z^{k}\right) \right) \times \left(z+\sum_{k=2}^{\infty}\frac{1}{(1+\lambda_{2}(k-1))}z^{k}\right)\right)'
$$
\n
$$
=\left(z+\sum_{k=2}^{\infty}\frac{(1+\lambda_{1}(k-1)+\ell)^{m-1}}{(1+\lambda_{2}(k-1))^{m}}c(n,k)a_{k}z^{k}\right)'
$$
\n
$$
=\left(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z)\right)'
$$

So, by using equation (3), we obtain

$$
z\left(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z)\right)' =
$$

$$
\frac{(\ell+1)}{\lambda_{1}}I^{m+1}(\lambda_{1},\lambda_{2},\ell,n)f(z) -
$$

$$
\frac{(1+\ell-\lambda_{1})}{\lambda_{1}}(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z) \rightarrow (5)
$$

Definition 2: [1]

Let $\theta \in (-\pi, \pi]$ and let $\psi \in \mathcal{M}$. A function $\mathcal{f} \in \mathcal{A}$ is said to be in the class $\mathcal{R}_{\theta}(\psi)$ if the following differential subordination is satisfied:

$$
f'(z) + \frac{1+e^{i\theta}}{2}z f''(z) \prec \psi(z), (z \in \mathbb{U}). \quad \rightarrow (6)
$$

Consider the function:

$$
\psi_0(z)=\tfrac{1+z}{1-z}
$$

So the corresponding class $\mathcal{R}_{\theta}(\psi_0)$ reduce to the class \mathcal{L}_{θ} , and the class $\mathcal{R}_{\theta}(\mathcal{Q})$ reduces to function class $\mathcal{L}p_{\theta}$; the function \mathcal{Q} is defined by (2).

We now define the function class
$$
\mathcal{R}
$$
 by
\n $\mathcal{R} = \mathcal{R}_0(\psi_0) = \{f : f \in$
\n \mathcal{A} and $Re(f'(z) + z f''(z)) > 0 \}$,

was investigated by Chichra [\[6\]](#page-6-5) and also by Singh and Singh [\[7\]](#page-6-6). Another function class \mathcal{R}_{β} given by

$$
\mathcal{R}_{\beta} = \{f \colon f \in \mathcal{A} \text{ and } Re(f'(z) + z f''(z)) > \beta \}, \rightarrow (7)
$$

which was considered by Silverman [\[8\]](#page-6-7), can also be obtained from $\mathcal{R}_{\theta}(\psi)$ upon setting $\theta = 0$ and $\psi = \psi_{\beta}$; $(0 \leq \beta < 1)$ where $\psi_{\beta} = \frac{1 + (1 - 2\beta)z}{1 - z}.$

Lemma 1: [9]

Let T be a convex function where $T(0) = a$ and $\tau \in \mathbb{C}^*$ with $Re \tau \geq 0$. If the function $p(z)$ $\forall z \in \mathbb{U}$ defined by

$$
p(z) = a + p_n z^n + p_{n+1} z^{n+1} + \cdots,
$$

is analytic in $\mathbb U$ an $p(z) + \frac{1}{z}zp'(z) < T(z)$,

$$
\therefore p(z) < q(z) < T(z), \text{ where}
$$
\n
$$
q(z) = \frac{\tau}{n z^{\tau/n}} \int_0^z T(\zeta) \zeta^{\tau/n - 1} \, d\tau
$$

2. Convolution Characterization, Integral Representation and Results Involving Differential Subordination:

Theorem 1

If $\psi \in \mathcal{M}$. A sufficient and necessary condition for a function $f \in \mathcal{A}$ to be in the class $\mathcal{R}_{\theta}(\psi)$ is given by

$$
\frac{1}{z} \left(\left((\ell+1)I^{m+1}(\lambda_1, \lambda_2, \ell, n) f(z) + \right. \right.
$$
\n
$$
(\lambda_1 - 1 - \ell) \left(I^m(\lambda_1, \lambda_2, \ell, n) f(z) \right) \bigg) * \frac{z - z^2 e^{i\theta}}{(1 - z)^s} \neq \lambda_1 \psi(e^{i\alpha}),
$$
\nwhere $\theta \in (-\pi, \pi]$, $\alpha \in [0, 2\pi)$ and $z \in \mathbb{U}$.

Proof

From (Definition 2) $f \in \mathcal{R}_{\theta}(\psi)$ if and only if

$$
f'(z) + \frac{1 + e^{i\theta}}{2} z f''(z) \neq \psi(z)
$$

$$
f'(z) + \frac{1 + e^{i\theta}}{2} z f''(z) \neq \psi(e^{i\alpha})
$$

Since

$$
f'(z) + \frac{1 + e^{i\theta}}{2} z f''(z)
$$

= $f'(z) \frac{2 + e^{i\theta} - e^{i\theta}}{2} + \frac{1 + e^{i\theta}}{2} z f''(z)$
= $f'(z) \left(\frac{1 + e^{i\theta}}{2} + \frac{1 - e^{i\theta}}{2}\right) + \frac{1 + e^{i\theta}}{2} z f''(z)$
= $\left(\frac{1 + e^{i\theta}}{2}\right) (zf'(z))' + \frac{1 - e^{i\theta}}{2} f'(z)) \neq \psi(e^{i\alpha})$
 $\therefore f'(z) + \frac{1 + e^{i\theta}}{2} z f''(z) =$
 $\left(f(z) \frac{1 - e^{i\theta}}{2}\right)' + \left(\frac{1 + e^{i\theta}}{2} z f'(z)\right)' \neq \psi(e^{i\alpha}) \to (8)$

Now, let

$$
zf'(z) = Im(\lambda_1, \lambda_2, \ell, n) f(z) * \frac{z}{(1-z)^2} \longrightarrow (9)
$$

and

$$
f(z) = I^m(\lambda_1, \lambda_2, \ell, n) f(z) * \frac{z}{1-z}, \to (10)
$$

By using (9) and (10) in (8), we get

$$
f'(z) + \frac{1 + e^{i\theta}}{2} z f''(z)
$$

=
$$
\left(I^m(\lambda_1, \lambda_2, \ell, n) f(z) * \frac{1 - e^{i\theta}}{2} \frac{z}{1 - z}\right)'
$$

+
$$
\left(I^m(\lambda_1, \lambda_2, \ell, n) f(z) * \frac{1 + e^{i\theta}}{2} \frac{z}{(1 - z)^2}\right)'
$$

$$
= I^m(\lambda_1, \lambda_2, \ell, n) f'(z) * \\
\left(\frac{1 - e^{i\theta}}{2} \frac{z}{1 - z} + \frac{1 + e^{i\theta}}{2} \frac{z}{(1 - z)^2}\right)' \neq \psi(e^{i\alpha}).
$$

That is equivalently,

$$
\left(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z) * \frac{(1-z)(1-e^{i\theta})z + (1+e^{i\theta})z}{2(1-z)^{2}}\right)'
$$
\n
$$
= \psi(e^{i\alpha})
$$
\n
$$
\left(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z) * \frac{(2z-z^{2}(1-e^{i\theta}))}{2(1-z)^{2}}\right) \neq \psi(e^{i\alpha})
$$
\n
$$
\left(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z) * \frac{z-z^{2}(\frac{1-e^{i\theta}}{2})}{(1-z)^{2}}\right) \neq \psi(e^{i\alpha})
$$
\n
$$
\left(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z)\right) * \left(\frac{1-e^{i\theta}}{(1-z)^{2}}\right) \neq \psi(e^{i\alpha})
$$
\n
$$
\frac{(1-z)^{2}(1-z+ze^{i\theta})-(-2)(1-z)\left(z-z^{2}(\frac{1-e^{i\theta}}{2})\right)}{(1-z)^{4}}
$$
\n
$$
\neq \psi(e^{i\alpha})
$$
\n
$$
\Rightarrow \left(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z)\right)' * \frac{(1-z)}{(1-z)^{4}}
$$
\n
$$
(1-z+ze^{i\theta}-z+z^{2}-z^{2}e^{i\theta}+2z-z^{2}-z^{2}e^{i\theta}) \neq \psi(e^{i\alpha})
$$

$$
\frac{1}{z}\Biggl(\Bigl(I^{m}\bigl(\lambda_1,\lambda_2,\ell,n\bigl)f(z)\Bigr)'\ast\frac{z-z^2e^{i\theta}}{(1-z)^3}\Biggr)\neq\ \psi\Bigl(e^{i\alpha}\Bigr)
$$

By using (5), we obtain

$$
\frac{1}{z}\left(\left((\ell+1)I^{m+1}(\lambda_1,\lambda_2,\ell,n)f(z)+\right.\right.\left.\left.\left(\lambda_1-1-\ell\right)\left(I^m(\lambda_1,\lambda_2,\ell,n)f(z)\right)\right)*
$$
\n
$$
\frac{z-z^2e^{i\theta}}{(1-z)^3}\right)\neq\lambda_1\,\psi(e^{i\alpha}).
$$
\nCorollary 1: [1]

If $\psi \in \mathcal{M}$. A sufficient and necessary condition for a function $f \in \mathcal{A}$ to be in the class $\mathcal{R}_{\theta}(\psi)$ is given by

$$
\frac{1}{z}\left(I^m(\lambda_1,\lambda_2,\ell,n)f(z)*\frac{z+z^2e^{i\theta}}{(1-z)^3}\right)\neq\psi\left(e^{i\alpha}\right),
$$

where $\theta \in (-\pi, \pi]$, $\lambda_1, \lambda_2, \ell, n = 0$ and $z \in \mathbb{U}; \alpha \in [0, 2\pi)$.

Theorem 2

If $\theta \in (-\pi, \pi)$ and let $\psi \in \mathcal{M}$. Suppose also that

$$
\tau = \frac{2}{1+e^{i\theta}}.
$$

Then $f \in \mathcal{R}_{\theta}(\psi)$ if and only if there exists $\omega \in \mathcal{B}$ such that the following equality :

$$
I^{m}(\lambda_{1}, \lambda_{2}, \ell, n) f(z) =
$$

$$
\int_{0}^{z} \frac{\tau}{\eta^{\tau}} \left(\int_{0}^{\eta} \zeta^{\tau-1} \psi(\omega(\zeta)) d\zeta \right) d\eta; z \in \mathbb{U}.
$$

Proof:

from (Definition 2) $f \in \mathcal{R}_{\theta}(\psi) \Longleftrightarrow$ there exists $\omega \in \mathcal{B}$ such that

$$
f'(z) + \frac{1+e^{i\theta}}{2}zf''(z) = \psi(\omega(z)) \rightarrow (11)
$$

By using (8) in the above equality (11), we obtain

$$
\frac{1-e^{i\theta}}{2}f'(z) + \frac{1+e^{i\theta}}{2}(z f'(z))' = \psi(\omega(z))
$$

Now, we have a derivative operator $I^m(\lambda_1, \lambda_2, \ell, n) f(z)$

$$
I^{m}(\lambda_{1}, \lambda_{2}, \ell, n) f(z) = z +
$$

\n
$$
\sum_{k=2}^{\infty} \frac{(1 + \lambda_{1}(k-1) + \ell)^{m-1}}{(1 + \ell)^{m-1}(1 + \lambda_{2}(k-1))^{m}} c(n, k) a_{k} z^{k}
$$

\n, where
\n
$$
n, m \in N_{0} = \{0, 1, 2, ... \} \text{ and } \lambda_{2} \ge \lambda_{1} \ge 0, \ell \ge 0.
$$

It follows that

$$
\frac{2}{1+e^{i\alpha}}\left(\frac{1-e^{i\theta}}{2}\right)\left(\left(I^m(\lambda_1,\lambda_2,\ell,n)f(z)\right)'\n+ \frac{2}{1+e^{i\theta}}\left(\frac{1+e^{i\theta}}{2}\right)\left(z\left(I^m(\lambda_1,\lambda_2,\ell,n)f(z)\right)'\right)'\n= \frac{2}{1+e^{i\theta}}\psi(\omega(z))\n\Rightarrow \left(\frac{1-e^{i\theta}}{1+e^{i\theta}}\right)\left(I^m(\lambda_1,\lambda_2,\ell,n)f(z)\right)'\n+ \left(z\left(I^m(\lambda_1,\lambda_2,\ell,n)f(z)\right)'\right) = \frac{2}{1+e^{i\theta}}\psi(\omega(z))\n\therefore \tau = \frac{2}{1+e^{i\alpha}}; \alpha \neq \pi.
$$

 $20x$

we obtain

$$
\left(\frac{1-e^{i\theta}}{2}\right)\tau \left(I^m(\lambda_1, \lambda_2, \ell, n) f(z)\right)'
$$

+
$$
\left(z \left(I^m(\lambda_1, \lambda_2, \ell, n) f(z)\right)'\right)' = \tau \psi(\omega(z))
$$

$$
(-\tau) \left(\frac{e^{i\theta} - 1 + 2}{2}\right) z^{\tau - 1} \left(I^m(\lambda_1, \lambda_2, \ell, n) f(z)\right)'
$$

$$
+ z^{\tau - 1} \left(z \left(I^m(\lambda_1, \lambda_2, \ell, n) f(z)\right)'\right)' = z^{\tau - 1} \tau \psi(\omega(z))
$$

$$
\implies \left(\tau - 1\right) z^{\tau - 1} \left(I^m(\lambda_1, \lambda_2, \ell, n) f(z)\right)'
$$

$$
+ z^{\tau - 1} \left(z \left(I^m(\lambda_1, \lambda_2, \ell, n) f(z)\right)'\right)' = z^{\tau - 1} \tau \psi(\omega(z)).
$$

we thus find that

$$
\left(z^{\tau-1}\big(z\big(I^m(\lambda_1,\lambda_2,\ell,n)f(z)\big)'\right)'=z^{\tau-1}\tau\,\psi(\omega(z)),
$$

which readily yields

$$
z^{\tau-1}\big(z\ \big(I^m(\lambda_1,\lambda_2,\ell,n)f(z)\big)'\big) = \tau \int_0^z z^{\tau-1}\ \psi(\omega(z))\ dz
$$

$$
I^m(\lambda_1,\lambda_2,\ell,n)f(z) = \int_0^z \frac{\tau}{\eta^{\tau}} \int_0^{\eta} (\zeta)^{\tau-1}\psi(\omega(z))\ d\zeta\ d\eta.
$$

Theorem 3:

Let $\psi \in \mathcal{N}$ and $\theta \in (-\pi, \pi)$. if $f \in \mathcal{R}_{\theta}(\psi)$,then

$$
(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z))' < \int_{0}^{1} \psi\left(z t^{1/\tau}\right) dt \prec \psi\big(\omega(z)\big) \rightarrow (12)
$$

and

$$
\frac{\left(I^{m}(\lambda_1,\lambda_2,\ell,n)f(z)}{z} < \int_0^1 \int_0^1 \psi\left(zr \ t^{1/\tau}\right)\right) dr \ dt \ , \to (13)
$$

for all $z \in \mathbb{U}$, and

$$
\tau = \frac{2}{1+e^{i\theta}}.
$$

Proof:

If $f \in \mathcal{R}_{\theta}(\psi)$, hence from (Definition 2), in this case the differential subordination (6) hold true .

Let
$$
p(z) = (I^m(\lambda_1, \lambda_2, \ell, n) f(z))'
$$
 and
\n
$$
\tau = \frac{2}{1 + e^{i\theta}}.
$$

Then

$$
(Im(\lambda1, \lambda2, \ell, n) f(z))' +
$$

$$
\frac{1 + e^{i\theta}}{2} \quad z \quad (Im(\lambda1, \lambda2, \ell, n) f(z))''
$$

$$
= p(z) + \frac{1}{\tau} \quad z \quad p'(z) < \psi(z).
$$

Since $Re(\tau) \geq 0$ and $\psi \in \mathcal{N}$ for $\theta \in (-\pi, \pi)$, and by using (Lemma 1), we have

$$
p(z) \prec \frac{\tau}{z^{\tau}} \int_0^z (\zeta)^{\tau-1} \psi(\zeta) d\zeta \prec \psi(z) \, . \rightarrow (14)
$$

With the substitution $\zeta = z t^{1/\tau}$ in the integral in (14) and

 $p(z) = (I^{m}(\lambda_1, \lambda_2, \ell, n) f(z))'$ the differential (14) yields

$$
(I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z))' \prec
$$

\n
$$
\frac{\tau}{z^{\tau}}\int_{0}^{1}(z t^{1/\tau}) \int_{0}^{\tau-1}\psi(z t^{1/\tau})\Big) \frac{1}{\tau} z t^{\frac{1}{\tau}-1} dt
$$

\n
$$
\prec \phi(z)
$$

\n
$$
\Rightarrow (I^{m}(\lambda_{1},\lambda_{2},\ell,n)f(z))' \prec \int_{0}^{1}\psi(z t^{1/\gamma}) dt \prec \psi(z).
$$

In order to obtain the differential subordination (13) ,we illustrate that the function $T(z)$ given by

$$
T(z) = \int_0^1 \psi\left(z \ t^{1/\tau}\right) \, dt \ , \to (15)
$$

belongs to the class $\mathcal N$. To prove this we first define

$$
\Phi_{\tau}(z) = \int_0^1 \frac{1}{1 - z t^{3/2}} dt =
$$

$$
\sum_{n=0}^{\infty} \frac{z}{n + z} z^n \to (16)
$$

For $Re(\tau) \geq 0$, the function $\Phi_{\tau}(z)$ is convex in $\mathbb U$.from (16) we obtain

$$
\psi(z) * \Phi_{\tau}(z) = \int_0^1 \frac{1}{1-z^{-t^{1/\tau}}} dt * \psi(z) = \int_0^1 \psi\left(z t^{1/\tau}\right) dt = T(z).
$$

The convolution of two convex functions is also convex in $\mathbb U$ see [\[10\]](#page-6-8). Therefore , the function $T(0) = 1$ Hence that $h \in \mathcal{N}$.

Now, let

$$
p(z) = \frac{I^m(\lambda_1, \lambda_2, \ell, n) f(z)}{z}
$$

\n
$$
\Rightarrow p(z) + z p'(z) =
$$

\n
$$
\frac{I^m(\lambda_1, \lambda_2, \ell, n) f(z)}{z} + z \left(\frac{I^m(\lambda_1, \lambda_2, \ell, n) f(z)}{z} \right)'
$$

\n
$$
= \frac{I^m(\lambda_1, \lambda_2, \ell, n) f(z)}{z} +
$$

\n
$$
z \left(\frac{z(I^m(\lambda_1, \lambda_2, \ell, n) f(z))' - I^m(\lambda_1, \lambda_2, \ell, n) f(z)}{z^2} \right)
$$

\n
$$
= (I^m(\lambda_1, \lambda_2, \ell, n) f(z))'
$$

Then, by using (12) and (15), we have

$$
p(z) + z p'(z) = (Im(\lambda_1, \lambda_2, \ell, n) f(z))'
$$

$$
< \int_0^1 \psi(z t^{1/\tau}) dt = T(z).
$$

By applying (Lemma 1) once more with $\tau = 1$, we obtain

New Results on Investigated Integral Representation and Convolution Characterization………………… Eman Khleifa

$$
p(z) < \frac{1}{z} \int_0^z T(\zeta) d\zeta < T(z). \rightarrow (17)
$$

If $\zeta = rz$ substitution in the integral in (17) ,if we take into account (15) and also that

$$
p(z) = \frac{I^m(\lambda_1, \lambda_2, \ell, n) f(z)}{z}
$$

The first differential subordination in (17) implies that

$$
\frac{I^m(\lambda_1,\lambda_2,\ell,n)f(z)}{z} < \frac{1}{z}\int_0^z z \ T(rz) dr < \int_0^1 \psi\left(z t^{1/\tau}\right) dt.
$$

$$
\implies \frac{I^m(\lambda_1,\lambda_2,\ell,n)f(z)}{z} < \int_0^1 \int_0^1 \psi\left(z \ r \ t^{1/\tau}\right) dr \ dt
$$

Corollary 3: [1]

If $f \in \mathcal{R}_{\theta}(\psi_M)$, for all $(-\pi < \theta < \pi)$, where

$$
\mathcal{R}_{\theta}(\psi_M) = \left\{ f : f \in \mathcal{A} \text{ and } \left| f'(z) + \frac{1 + e^{i\theta}}{2} z f''(z) - 1 \right| \le M, (z \in \mathbb{U}; M > 0) \right\}.
$$

and $\psi_M(z) = 1 + Mz$ (*M* > 0). Then

$$
\left|\left(I^{m}\left(\lambda_{1},\lambda_{2},\ell,n\right)f(z)\right)'-1\right|\leq\frac{M\sqrt{2}}{\sqrt{5+3\cos\theta}},
$$

and

$$
\left|\frac{I^m(\lambda_1,\lambda_2,\ell,n)f(z)}{z}-1\right|\leq \frac{M\sqrt{2}}{2\sqrt{5+3\cos\theta}}\,.
$$

There are a lot of research papers related to study integral operator and differential operator those interested in studying it can view [\[11\]](#page-6-9), [\[13\]](#page-6-10) , [\[14\]](#page-6-11) [\[12\]](#page-6-12) and [\[15\]](#page-6-13).

3. Conclusion

in this work ,we have considered a certain

function class $\mathcal{R}_{\theta}(\psi)$ of all normalized analytic functionswhich satisfy the followng differential subordination :

$$
f'(z) + \frac{1}{2} (1 + e^{i\theta}) z f''(z) < \psi(z)
$$

We successfully applied of differential subordination between analytic functions, and we investigated integral representation and Convolution characterization and Differential Subordination Results.

References

1. Srivastava, H., D. Răducanu, and Zaprawa P., (2016),

A certain subclass of analytic functions defined by means of differential subordination. Filomat. **30**(14): p. 3743-3757.

- 2. Silverman, H.,(1990), *Characterizations for subclasses of univalent functions.* Math. Japonica (1). **50**: p. 103-109.
- 3. Trojnar-Spelina,L.,(2005),*Characterizations of subclasses of univalent functions.* Demonstratio Mathematica. **38**(1): p. 35-42.
- 4. Rahmatan, H., et al.,(2022), *Subordination method for the estimation of certain subclass of analytic functions defined by the-derivative operator.* Journal of Function Spaces. **2022**.
- 5. Amer, A.A. and Darus M.,(2011), *On some properties for new generalized derivative operator.* Jordan Journal of Mathematics and Statistics (JJMS). **4**(2): p. 91-101.
- 6. Chichra, P.N.,(1977), *New subclasses of the class of close-to-convex functions.* Proceedings of the American Mathematical Society. **62**(1): p. 37-43.
- 7. Singh, R. and Singh S., (1989),*Convolution properties of a class of starlike functions.* Proceedings of the American Mathematical Society. **106**(1): p. 145-152.
- 8. Silverman, H., (1994),*A class of bounded starlike functions.* International Journal of Mathematics and Mathematical Sciences. **17**: p. 249-252.
- 9. Hallenbeck, D. and Ruscheweyh S.,(1975), *Subordination by convex functions.* Proceedings of the American Mathematical Society. **52**(1): p. 191- 195.
- 10. Ruscheweyh,S.,(1975),*New criteria for univalent functions.* Proceedings of the American Mathematical Society. **49**(1): p. 109-115.
- 11. Shmella, E.K. and Amer A.A ,(2024), *Estimation of the Bounds of Univalent Functional of Coefficients Apply the Subordination Method*.
- 12. Alabbar, N., M. Darus, and Amer A.,(2023), *Coefficient Inequality and Coefficient Bounds for a New Subclass of Bazilevic Functions.* Journal of Humanitarian and Applied Sciences. **8**(16): p. 496- 506.
- 13. Amer, A.A. and Alabbar N.M. ,(2017), *Properties of Generalized Derivative Operator to A Certain Subclass of Analytic Functions with Negative Coefficients.*
- 14. Amer, A.A. *, (2015), Second Hankel Determinant for New Subclass Defined by a Linear Operator*. in *Computational Analysis: AMAT, Ankara, May 2015 Selected Contributions*. 2016. Springer.
- 15. Shmella, E.K. and Amer A.A. ,(2024), *Some properties of Differential Subordination for the Subordination Class with the Generalized* مجلة جامعة بني وليد للعلوم اإلنسانية *.Operator Derivative* 390-400. .p :والتطبيقية,