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Abstract: In this work, we are investigated integral representation and Convolution characterization and
Results of Differential Subordination for functions belong to -'Rg[l,ﬁ')by introduce generalized derivative

operator ,where Rg (1) denote to the class of all analytic normalized functions in .
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1. Introduction functions I’ belong to the subclass N of M

Let f denote of the analytic functions in the for which 1£I(]Uj is a convex domain .

class «A 1] of the form : Now , denote by #* the well -known class of

analytic functions P(z) ¥z € U with

f(zj=z—|—Zakzk (zel), (1)

Re[p(z]) =0 and p(0)=1.

in the open unit disk
o= {Z: |Z| = 1;2 = 'E},Where . is a

complex number .and denote & the subclass of
A in U where & consisting of univalent
functions and let the familiar subclass £ of &

whose members are convex functions in I .

Now, let M denote the class of analytic

functions l,EJ'(E j in U, normalized
by |1,EJ'(Z:]| = 1land L{I[ﬂ) = 1. all univalent

And denote by ‘B the class of analytic
functions @(z) in UWVz € U with [1]
lw(z)| =1 and w(0)=10.

Recently, Silverman and Silvia [2]considered
the following class of functions:

if

Ly=if:f€Aand Re|f'(z)+ ——=zf"(2) |= 0},

where 8 € (—m,m] . 1ftb — @ for this class

of functions ,they obtained extreme points and
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convolution characterizations .[3],on the other
hand ,studied the function class £ # g given

by

14"

ﬁﬁs{ﬁf&‘lﬂndf’&H Zf”[ZJ{Q(Z)J:

where @ € (—m,7]. The function Q(z)
Wz € Uwhere @(0) =1 and

Q(z)=1+ 2 (lng (i-lwf))_,% (2)

m? —\z

maps onto the domain given by

O={w:weC and |w—1| < Re (w)}.

Now ,if the function f and G are analytic in
U then we say f is subordinate to & in

U written as f =< g if there is a Schwarz
function ¥(z) analytic in U, with |v(z)] < 1,

so that f(z) =g[u(z]) ; z€ .

Furthermore ,If the function £ is univalent in

U then the subordination f(z) < g () is

equivalent to

f(0)=g(0) and f(U)=g(U) 4.

The Hadamard product of two analytic

functions fand & denoted by f # g , where
f(z) of the form (1) and

glz)=z+ X2, bkzk ; (z € Uis
defined by

(F*9)(2) = f(2) *g(z) =z +Z a b, 2%,

In light of product, Amer and Darus [5] they
have recently introduced a new generalized

derivative operator.

Definition 1:

For f € <A the operator I™ (.:11,411-3, Hj is

defined by I A, A, £, )i — A,

I™(1,4,8,n)f(2) = @™ (A,4,,£) (2) *R™f(2),

where A, =2 A; =20, £ = 0 and
m E N, ={0,1,2,.....} and R"f(z)
denotes the Ruseheweyh derivative operator all

z € I and given by

R"f(z) =z + Z c(n, k) a, b,z
=

(ntllp_,

andm E N, .
(De—s 0

where c(n, kj =

Iff(z) given by (1), then we easily find from

™AL A dn)f(z) = o™ (A4, 8)(2) * R f(2),

That
.I!I.:':"'I (,1113.-:}'&’, njf[:z] =z _I_
Em (144, (E—1)+£)ym—L

k=2 |:1+'f}m_._|:1+-’1:':k—1}:|

mc(n, k)a,z*

,where

nmeN,={0,12,....}and A, = 4, =
':I; 'E E ':I.
Using simple computation one obtains the next

result

(£+ D™ Ay A, £ n)f(2)
= (1+£-2) (" (A2 8m) = @' (A4, 2,,6) (2))f (2)
t2,2(1" (A Ay i) = 0 2y DF(2)) = (3)

where fPl [:‘;Ll!"l: B -E:] (2) analytic function

given by
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1 — N 1 k
P (A4, 8)(z) =z +Zm z¥.— (4)

Now, from equation (2) and (4),we have

(Im (A2 8m) = qul(ll,,lj,fjf(z]) -
o (1 +A(k—1)+Hm .
((Z+;(l+'€jm_l[l +-’1:(I{— l))m C(n;kjﬂ-kz )
oa 1 '
z(z +;mzk))

o (14 A, k—1)+ o™t . ‘
(z +Z 1+ 6™ (1+ A, (k—1))" c(n,k)a,z )

=
= (1 (A, A,8,0)f (z)]r

So, by using equation (3), we obtain
z(1"(Ap Az, n)f(z))f =

wf?n+1(‘111‘12 Ln)f(z) -
P :

(1+£€—2,)

1 (U™ (Ap Az 8, ) f(2).— (5)

Definition 2: [1]

Let 8 € (—m, ] and let ) € M. A function
f € <A is said to be in the class Rg () if the
following differential subordination is satisfied:
1 _|_ ei'g

2

@)+ zf"(z) < ¢(2).(zeU). - (6)

Consider the function:

Py (z) =

1+=

1-=

So the corresponding class Rg (111’1’[:.) reduce to
the class Ly . and the class Rg( Q) reduces to

function class £ g; the function @ is defined
by (2).
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We now define the function class -R by
R=Ry(W) ={f:f €
AandRe(f'(z) +z f'(z)) =01}

was investigated by Chichra [6] and also by
Singh and Singh [7]. Another function class

Rp given by
Rp ={f:f €A and Re(f'(z) +
zf"(2) =B }—=(7)

which was considered by Silverman [8], can
also be obtained from Rg(3'Jupon setting

=0 andy =, (0 = £ < 1)where
1+01-28)=
Yp =2

1-=z
Lemma 1: [9]

Let T be a convex function where T[ﬂ) =a
and T € C* with Re T = 0. If the function
p(z) ¥V z € U defined by

P(Zj =a + P”Z” + p”+lz:'!+1 + )

is analytic in IJ an

p(2) +12p'(2) < T(2),

~p(z) < g(z) < T(2), where
T ¥4 Ty
frd — ¢ —1
4@ = —7 [F 1) -1 dx
2. Convolution Characterization,

Integral Representation and Results
Involving Differential Subordination:

Theorem 1

If Y € M. A sufficient and necessary
condition for a function f € <A to be in the
class Rg(1r) is given by

: ((“” + DI (A A, 8 n)f (2) +
(A= 1= 0 (I"(Ap 1,6 0)f(2))) *

_E:EEE .
E ) + *’11 J,Lr[e’“),

(1-=)®

where 8 € (—m, ] ,a € [0,2n)and z € 1.
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j— ' .
Proof =™ (Alrlg;&ﬂ)f (z) =

From ( Definition 2) f € Rg(1') if and only if

EEE Z f [ 2.
> 1-z 1 2 (-2 * ¥(e").

(l—nﬂ}‘"El Z 1+
1+ e
Fl@+——zf"(2) % ¥()
That is equivalently,
¥ 1+EEE " 7.3 (l— j(l— iﬂ) +[l+ iﬂ) "
f (Zj + 2 Zf (Zj #+ 1.{,!'[:& ) (f’n(ll,ﬂng,ﬂ)f(z)*( z Z(EZL _ZZ): c z))
Since _
r 1+ EEE " 7 ]’{J[em)
F@+—5—=f"() e
(2z —z°(1—e") .
_ _ _ (!’“(Al,ilé’,njf(z)* . ) = Y(e™)
z_l_eig _EEE 1 +eig z(l—zj—
= f&) 5 +—5—:f"()
g\’
1+ i 1 i 1+ i _z_z:[l_ze ] .
(e ) e e e | EARENO g | = v
_[1+e® o, 1—e® - ~ '
—( 5 )(Zf (=) + > £z = y(e) (f (ﬂbﬂ:}{’,n}f{z]) *
i _ _ if
L F(2) + 1 +2€ Ezf”(z]l — (1—z}f{l—z+zef9:}—(—2)(l—z) (Z—Z:(l 29 ))
: (1-2)#
— iy’ oif _
(f(z}l > )+(”2 sz(z:l) 20 = @) L y(e)
ow, 1€ m f- [l_zj
Now, let = (I"(A,2,8,m)f(2)) ST
' =144, £, ¥ - — (9
A (Ao Em)f (2) (1—-2z)2 ) (1—z-|-ze"9—z-l-z:—z:eig+22—zf—z:eig}¢ yb[e"“’)
and 1 1z —z%e"
(™2, A, 8 0)f(2) w—)¢ p(e'®)
f(z) — fn!(ﬂrl,ﬂrlf;ﬂ)f(z) # 1;33 ,— (10) Z (( 1 ) (l—ZjE
By using (5), we obtain
By using (9) and (10) in (8), we get
i6 e+ D@ 1,8 +
F@+ =52 : ((( eI
, f (A, —1-4) (f”“ [Al,ig,é’,n)f&)]) ®
1—e"™ =z
= I™(A,A€.n)f(z) = ) JENE: -
( (l ) 2 1—=z m)#lllﬂ[e )

1+ e “
+ (I?:ﬂ (Al"l:‘lf’n)f(zj " ze (1 _-ZZ): ) Corollary 1: [1]
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If Y € M. A sufficient and necessary
condition for a function f € <A to be in the
class Rg (1) is given by

- I™(1y, 45,6, 1)f (2) * zte” = P(e')
- P, NP\ Z) % ———— =
. e (1—2z)3

where 8 € (—m,m], A, A;€,n =0 and

z€ ;e €[0.2m) .

Theorem 2

If8 € (—m, ) and let i € M. Suppose also
that

2
14 e

r:

Then f € ERg [:J,EJ') if and only if there exists
e € ‘B such that the following equality :

I™(ApA £.n)f(2) =

= 5 n ~
J; F(L ‘ l"&[“”m)df)d’-‘nz EU.

Proof:

from (Definition 2) f € Rg [l,ﬂl':] = there exists
w € B such that
1+ e

2

fla)+ zf'(z) = Ylw(z) — (11)

By using (8) in the above equality (11), we
obtain

1—ef® 14 et IV
> f'(z) + > (zf' (@) = plw(z)

Now, we have a derivative operator

I™ (A4, £,m)f(2);

(A, 4,4, n)f(z) =z +

yo- (144, (k—1)#8)™*
RE2 e nm=1(144, (k-1))

, Where

nm€EN,={0,12,..}and A, = 4, =

0,f£=0.

It follows that

m—c(n, k)a,z*

—EEE '
— (1 . )( (" (A A8 m)F (D))

v

2 l+e£g m r
+1_|_ez'5( 2 )(z ('{ (‘;l’l";l':,'f!n)ftzj) )
= (@)
= T3 Y@@

_ EEE
= (1+efﬂ) (I (A A, £.n)f(2))
m Y 2
+(z (M(Ap A, £ m)f(2)) = T ((2)).
wu — 2
TS Tyew U7
we obtain

1— et
A

+(z (M(Ap A, 81 f(2))') = 7 w(w(2)

ezE
(-7) (TH)U (A Ay & m)f(2)

+27 Yz (" (A 8 n)f@)) = 2 9(0(2))

= (1—1) z7 ((M(A A, n)f(2)

+2774z (ML en)f(2)) = 21 (w(z))

we thus find that
(7 " habm)f@))) = e da(a)

which readily yields

e (Mt @) =7 | () do

0

(43,6 m)f(2) = f - f O 9((2)) d dn.

Theorem 3:

Let ¥ € N and 8 € (— m, ). if
fER, (1) then
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1

(™A Ay E0)f(2)) < f w(z tlf"r))dr < p(w(2))~ (12)

0
and

4

(I™ Ay o8 mf(2) rJ'l :p{zr £/ )dr dt ,— (13)

forallz € U ,and

2
C 1+4ei®

Proof:

If f ERy (y).hence from (Definition 2),in

this case the differential subordination (6) hold
true .

Letp(2) = (I"(Ap Az £m)f(2)) and
2

T= ——7%
14 e

Then

(I™(Ap Ay L) F(2))' +
; i
e . ™ (A A fim)f(2))"

=p(@)+- 2’ ()< ()

Since Re (1) = 0 and Y E N for

g e (—]‘1’, ]‘I:], and by using (Lemma 1) ,we
have

p(2) < % [7( () di <
P(z) .~ (14)

1
With the substitution ‘,7 =zt /x in the
integral in (14) and

p(Zj = (I?ﬂ (‘111-‘1:;&'} n’)f[zj)f the
differential (14) yields

(™A 228 m)f () <
) Wz )t 2 e
< ¢(z)

1

= (I"(A, A, 6 0)f(2)) < j u’,r(z rlf"rjjdr < (2).

]

In order to obtain the differential
subordination (13) ,we illustrate that the

function T'(z)given by
1 »

T(z) = f (zt77))dt,— (15)
o

belongs to the class JV". To prove this we first

define
1 1
O, (2) = [ —dt =
oo T T
_ Z. = (16
n_0n+r ( :]

For Re(T) = 0,the function ®_(z) is convex

in U from (16) we obtain

1

W)@, () = [} —=
_I"; J,Lr(z tl"rf}dt =T(z).

The convolution of two convex functions is also

dt » p(z) =

convex in I see [10]. Therefore ,the function

T(0) = 1. Hence that h € V" .

Now, let

I™(A, 4, €,n)f (2)

4

plz) =

=p(z)+ zp'(2) =

(A2 8n)f () ( - (Al,,lg,f,n)f(z))’

=z =z

(A2, 8,n)f(2) .

e

P

7l

, ( (™A, A, 6n)f(2)) — I™(ApA,8n) f(z))
= (I™(A,4,€n)f(z))

Then, by using (12) and (15), we have

p(2)+ zp'(2) = (I"(A, 2,8, n)f(2))’
< [Fw(zt7m))dt = T(2).

By applying (Lemma 1) once more with
T = 1 we obtain
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plz) =< ZEJ- T({)di =T(z). —= (17)

If { = rz substitution in the integral in (17)
,if we take into account (15) and also that

m (4,4, -f,:-zjlf(z}

=

plz) =

The first differential subordination in (17)
implies that

m 4 1
R CEALIC) (Al’/l:’f’n)f(zj < EJ. z T(rz)dr -=:J. I.U(z tl"ffjdt.
0

Z z 0

=z

fm[.ll,l:'f,ﬂ)f(zj » Jljlw{z F tl*'rr) dr dt .
o Yo

Corollary 3: [1]

It f € Ry ) forall(—m < 6 < m),

where

Re(y) = {f:f € A and |f'(2) +

126
H,,E zfn(z]—l‘ <M (zel; M :sl]]}_

and Yy (z) =1+ Mz (M = 0). Then

M \."E

m A.,,lﬂ-f, —1 =,
|( [1 2, n)f(zjj | VSt 3058

and

‘ M(A,.4, £n)f(=)

=

MYZ
l‘ ::_:: ;,— .
25+ 3cosl

There are a lot of research papers related to
study integral operator and differential
operator those interested in studying it can
view [11], [13], [14] [12] and [15].

3. Conclusion

in this work ,we have considered a certain

function class fRﬁ (‘lfJ) of all normalized

analytic functions which satisfy the followng
differential subordination :

f'(z) +% (1+e¥)zf"(2)<w(2) ,

We successfully applied of differential
subordination between analytic functions, and we
investigated integral representation and
Convolution characterization and Differential
Subordination Results.
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