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Abstract:  

In this paper, we will apply the tanh-function scheme with the aid of Maple software to construct   

new explicit wave solutions of the nonlinear Pochhammer-Chree equation. Also, we use a direct algebraic 

method based on the Liénard equation to find other diffrent new explicit solutions. Soliton solutions, 

periodic solutions and rational functions solutions are obtained. Comparing our new results obtained 

in this paper with the well-known results are given. Further, some 2D and 3D graphs of the obtained 

explicit traveling wave solutions are shown. Finally, the tanh-function expansion scheme presented in 

this paper is straightforward, concise and it can also be applied to other nonlinear partial differential 

equations in mathematical physics. 

Keywords: Explicit wave solutions, nonlinear PDEs, nonlinear Pochhammer-Chree equation, the tanh-

function scheme, Liénard equation.  

1. Introduction 

In the recent years, many new natural 

phenomena exist in mathematical physics and 

some other fields as plasma physics, biology, 

chemistry, engineering, quantum mechanics, 

fluid mechanics, optical fibers, hydrodynamic 

waves and etc., which can be describe by 

nonlinear PDEs.  

There are many analytical schemes to obtain 

explicit wave solutions for the nonlinear PDEs 

in mathematics and physics such as the 

modified extended tanh-function scheme [1-5], 

the (
𝐺′

𝐺
)expansion approach [6-9], the  

generalized (
𝐺′

𝐺
,
1

𝐺
)expansion method [10], the 

Exp-function method [11], the Jacobi-elliptic 

function method [12], the auxiliary equation 

method [13], the generalized-projective Riccati 

equations method [14], the modified algebraic 

method [15], the new mapping method [16] and 

etc. 
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The tanh-function scheme depends on 

adding integration constants to the resulting 

nonlinear ODEs from the nonlinear PDEs using 

wave transformation.  

The objective of this article is to employ the 

modified tanh-function expansion scheme [1, 2] 

and the direct approach with the help of the 

Liénard equation [10], for finding new explicit 

wave solutions of the following nonlinear 

Pochhammer-Chree equation [17]: 

𝑢𝑡𝑡 − 𝑢𝑥𝑥𝑡𝑡 − (𝜗𝑢 + 𝛽𝑢3 + 𝛾𝑢5)𝑥𝑥 = 0,            (1.1)  

where ϑ, 𝛽, 𝛾  are constants. 

The Eq. (1.1) represents nonlinear models of 

longitudinal wave propagation in elastic rods 

and it has discussed in [17] by using the 

(G'/G,1/G) expansion method. 

This article is organized as follows. In section 

2, we give the description of the modified tanh-

function expansion scheme. In section 3, we 

apply this method to the nonlinear 

Pochhammer-Chree equation. In section 4, 

further results for the nonlinear Pochhammer-

Chree are obtained. In section 5, conclusions 

are given. 

2. Description of the modified tanh-function 

expansion method 

We suppose that the given nonlinear partial 

differential equation for 𝑢(𝑥, 𝑡) to be in the form: 

𝑃(𝑢,  𝑢𝑥, 𝑢𝑡 ,  𝑢𝑥𝑥 , 𝑢𝑥𝑡 , 𝑢𝑡𝑡, … ) = 0,                   (2.1) 

where P is a polynomial in its arguments. The 

essence of the modified tanh-function 

expansion method can be presented in the 

following steps [1, 2]:  

Step 1: Seek travelling wave solutions of Eq. 

(2.1) by taking 

𝑢(𝑥, 𝑡) =  𝑢(),  =  𝑥 − 𝑐𝑡 ,                     (2.2) 

The transformation (2.2) converts Eq. (2.1) to 

the ordinary differential equation (ODE): 

𝑄(𝑢, 𝑢′, 𝑢′′, … ) = 0,                                         (2.3)                                                                                 

where prime denotes the derivative with respect 

to . 

Step 2: If possible, integrate Eq. (2.3) term by 

term one or more times. This yields constant(s) 

of integration. For simplicity, the integral 

constant(s) may be zero. 

Step 3: We assume that Eq. (2.3) has the 

formula solution: 

𝑢(𝜉) = 𝑎0 + ∑ 𝑎𝑖𝜙
𝑖(𝜉)𝑛

𝑖=1 + ∑ 𝑏𝑖𝜙
−𝑖(𝜉)𝑛

𝑖=1 ,       (2.4)           

where n is a positive integer that can be 

determined by balancing the highest-order 

derivative term with the highest nonlinear term 

in Eq. (2.4), 𝑎0, 𝑎𝑖 , 𝑏𝑖 , 𝑖 =  1, 2, . . . , 𝑛  are 

parameters to be determined such that 𝑎𝑛 ≠ 0 or 

𝑏𝑛 ≠ 0 and 𝜙′(𝜉) is a solution of the following 

Riccati equation: 

𝜙′(𝜉) = 𝑏 + 𝜙2(𝜉),                                     (2.5)  

where 𝑏 is a constant. It is well-known that Eq. 

(2.5) has three types of explicit solutions [1, 2]. 

In some nonlinear equations the balance 

number 𝑛 is not a positive integer. In this case, 

we make the following transformations [17]: 

 (a) when 𝑛 =  𝑞/𝑝 , where 𝑞/𝑝 is a fraction in the 

lowest terms, we let  

 u (ξ) = 𝑣
𝑞
𝑝(ξ) ,                                           (2.6) 

 then substitute (2.6) into (2.3) to get a new 

equation in the new function 𝑣(ξ) with a positive 

integer balance number;  

(b) when 𝑛 is a negative number, we let 

  u (ξ) = 𝑣𝑛(ξ),                                            (2.7)  

and substitute (2.7) into (2.3) to get a new 

equation in the new function 𝑣 (ξ) with a positive 

integer balance number. 

Step 4: We Substitute (2.4) with (2.5) into Eq. 

(2.3) yields a set of algebraic equations involving 

𝑎0, 𝑎𝑖 , 𝑏𝑖 , 𝑖 =  1, 2, . . . , 𝑛 and c, which can be solved 

using Maple or Mathematica to obtain analytic 

explicit solutions of the nonlinear PDE (2.1) in 

closed form. In the next sections, we will find the 
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explicit solutions of Eq. (1.1) using the modified 

tanh-function expansion method and a direct 

method with the help of Lienard equation. 

3. Explicit wave solutions of Eq. (𝟏. 𝟏) using 

the modified tanh-function expansion 

method 

In this section, we will apply the modified 

tanh-function expansion method to construct 

new explicit solutions of the nonlinear 

Pochhammer-Chree equation (1.1). To this aim, 

we use the wave transform (2.2) to convert Eq. 

(1.1) to the following nonlinear ODE: 

𝑐2𝑢′′ − 𝑐2𝑢′′′′ − (𝜗𝑢 + 𝛽𝑢3 + 𝛾𝑢5)′′ = 0.           (3.1) 

Integrating (3.1) w. r. to 𝜉 twice, we have 

(𝜗 − 𝑐2)𝑢 + 𝑐2𝑢′′ + 𝛽𝑢3 + 𝛾𝑢5 = 0.               (3.2) 

By balancing 𝑢⁵ with 𝑢′′ in Eq. (3.2), we get 𝑛 =
1

2
. 

Therefore, we use the new transformation: 

𝑢(𝜉) = 𝑣
1
2(𝜉),                                       (3.3) 

where 𝑣(𝜉) is a new function of 𝜉 . Substituting (3.3) 

into Eq. (3.2) ,we get the new nonlinear ODE: 

(𝜗 − 𝑐2)𝑣2 +
𝑐2

4
(2𝑣𝑣′′ − (𝑣′)2) + 𝛽𝑣3 + 𝛾𝑣4 = 0,            (3.4) 

we balance the variables 𝑣𝑣′′ with 𝑣⁴ in Eq.  (3.4) 

giving 𝑁 = 1. Thus we obtain the corresponding 

solution: 

𝑣(𝜉) = 𝑎0 + 𝑎1𝜙 + 𝑏1𝜙
−1,                             (3.5)  

where 𝑎₀, 𝑎₁, 𝑏₁ are constants to be detemined, 

such that 𝑎₁ ≠ 0, or 𝑏₁ ≠ 0, while 𝜙 satisfies the 

Riccati Eq. (1.5). Substituting (3.5) into (3.4) 

and using (1.5), the left-hand side of (3.4) 

becomes a polynomial in 𝜙. Setting the 

coefficients of this polynomial to be zero yields 

a system of algebraic equations as follows: 

𝜙⁴: 𝑎1
4𝛾 +

3

4
𝑎1

2𝑐² = 0,  

𝜙³: 𝑎₀𝑎₁𝑐² + 𝑎1
3𝛽 + 4𝑎₀𝑎1

3𝛾 = 0,  

𝜙2: 𝑎1
2𝜗 − 𝑎1

2𝑐2 +
1

2
𝑎1

2𝑏𝑐2 +
3

2
𝑎1𝑏1𝑐2 + 3𝑎0𝑎1

2
𝛽 +

6𝑎0
2𝑎1

2𝛾 + 4𝑎1
3𝑏₁𝛾 = 0,  

𝜙: 2𝑎₀𝑎₁𝜗 − 2𝑎₀𝑎₁𝑐² + 𝑎₀𝑎₁𝑏𝑐² + 3𝑎0
2𝑎₁𝛽 + 3𝑎1

2𝑏₁𝛽 +

4𝑎0
3𝑎₁𝛾 + 12𝑎₀𝑎1

2𝑏₁𝛾 = 0,  

𝜙0: 𝑎0
2𝜗 + 2𝑎₁𝑏₁𝜗 − 𝑎0

2𝑐² − 2𝑎₁𝑏₁𝑐² + 3𝑎₁𝑏₁𝑏𝑐² −

1

4
𝑐²𝑎1

2𝑏² −
1

4
𝑐²𝑏1

2 + 𝑎0
3𝛽 + 6𝑎₀𝑎₁𝑏₁𝛽 + 𝑎0

4𝛾 +

𝑎0
2𝑎₁𝑏₁𝛾 + 6𝑎1

2𝑏1
2𝛾 = 0,  

𝜙−1: 2𝑎0𝑏1𝜗 − 2𝑎0𝑏1𝑐2 + 𝑎0𝑏1𝑏𝑐2 + 3𝑎0
2𝑏1𝛽 +

3𝑎₁𝑏1
2𝛽 + 4𝑎0

3𝑏₁𝛾 + 12𝑎₀𝑎₁𝑏1
2𝛾 = 0,  

𝜙−2: 𝑏1
2𝜗 − 𝑏1

2𝑐² +
3

2
𝑎₁𝑏₁𝑏²𝑐² +

1

2
𝑏1

2𝑏𝑐² + 3𝑎₀𝑏1
2𝛽 +

6𝑎0
2𝑏1

2𝛾 + 4𝑎₁𝑏1
3𝛾 = 0,  

𝜙⁻³: 𝑎₀𝑏₁𝑏²𝑐² + 𝑏1
3𝛽 + 4𝑎₀𝑏1

3𝛾 = 0,  

𝜙−4 : 
3

4
𝑏1

2𝑏²𝑐² + 𝑏1
4𝛾 = 0.  

On solving the above algebraic equations using 

Maple, we get the following results: 

Case 1. 

𝑏 =
−(𝑐2 − 𝜗)

𝑐2 , 𝑎0 = ±√
−3(𝑐2 − 𝜗)

4𝛾
 ,    𝑎1 = ±√

3𝑐2

−4𝛾
,  

 
  𝑏1

= 0, 𝛽 = ±
8

3
√

−3(𝑐2 − 𝜗)

4𝛾
, (3.6) 

where 𝛾 < 0 and (𝑐2 − 𝜗) > 0. 

From (3.3), (3.5) and (3.6), we can derive the 

explicit wave solutions as follows: 

(I) For 𝑐² − 𝜗 > 0, ⇒  𝑏 < 0,  then we have the 

dark soliton solution: 

𝑢(𝜉) = [√
−3(𝑐2 − 𝜗)

4𝛾
(1 ± tanh(√

𝑐2 − 𝜗

𝑐2
𝜉))]

1
2

, 

(3.7) 
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where 𝜉 = 𝑥 − 𝑐𝑡. 

 

  

Figure 1. The profile of the dark-soliton 

solution (3.7) with 𝑐 = 1, 𝑎 =
1

2
, 𝛾 = −2. 

(II) For c² − α = 0,⇒ 𝑏 = 0,  𝑐 = ±√𝑎, 𝑎₀ = 0, and 

𝑎₁ = ±√
−3𝜗

4𝛾
, then we have the solution: 

𝑢(𝜉) = [∓√
−3𝜗

4𝛾

1

𝜉
]

1
2

,                              (3.8) 

where 𝜉 = 𝑥 ∓ √𝜗𝑡. 

Case 2. 

𝑏 =
𝜗 − 𝑐2

𝑐2 ,   𝑎0 = ±√
3(𝜗 − 𝑐2)

4𝛾
 ,    𝑎1 = 0,   

 𝑏1 = ±√
3

−4𝛾
(
𝜗 − 𝑐2

𝑐2 ), 

  𝛽 = ±
4

3
√

3(𝜗 − 𝑐2)

𝛾
,    𝑐 = 𝑐,                       (3.9) 

where 𝛾 > 0 and (𝜗 − 𝑐2) > 0. 

If For 𝜗 − 𝑐² < 0, ⇒  𝑏 < 0, then we have the 

singular soliton solution: 

𝑢(𝜉) = [√
−3(𝑐2 − 𝜗)

4𝛾
(1 ± coth(√

𝑐2 − 𝜗

𝑐2 𝜉))]

1
2

 ,   

(3.10) 

where 𝜉 = 𝑥 − 𝑐𝑡. 

Case 3. 

𝑏 =
𝑐2 − 𝜗

5𝑐2 , 𝑎0 = ±
1

5
√

−15(𝑐2 − 𝜗)

𝛾
 , 

 𝑎1 = ±√
3𝑐2

−4𝛾
,    𝑏1 = ±√

3(𝑐2 − 𝜗)2

−100𝛾𝑐2 ,   

𝛽 = ±
8

3
√

−3𝛾(𝑐² − 𝜗)

5
, 𝑐 = 𝑐,                (3.11) 

where 𝛾 < 0 and (𝑐² − 𝜗) > 0. 

(I) For 𝑐² − 𝜗 > 0,⇒ 𝑏 > 0, we have the periodic- 

solution 

𝑢(𝜉) = [
1

5
√

−15(𝑐² − 𝜗)

𝛾
(1 ±

1

2
tan(√

𝑐2 − 𝜗

5𝑐2 𝜉)

±  
1

2
cot (√

𝑐2 − 𝜗

5𝑐2 𝜉))]

1
2

 ,  

(3.12) 

where 𝜉 = 𝑥 − 𝑐𝑡. 

(II) If 𝑏 = 0,  then we obtain the same solution 

(3.10)  

Case 4. 

𝑏 =
−(𝑐2 − 𝜗)

4𝑐2 , 𝑎0 = ±√
−3(𝑐2 − 𝜗)

4𝛾
 , 
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 𝑎1 = ±√
−3𝑐2

4𝛾
,    𝑏1 = ±√

−3(𝑐2 − 𝜗)2

64𝛾𝑐2 , 

  𝛽 = ±
8

3
√

−3𝛾(𝑐2 − 𝜗)

4
,        𝑐 = 𝑐,              (3.13) 

where 𝛾 < 0 and (𝑐² − 𝜗) > 0. 

)I) For 𝑐² − 𝜗 > 0,  ⇒  𝑏 < 0, then we have the 

straddled solitons solution: 

𝑢(𝜉) = [√
−3(𝑐² − 𝜗)

4𝛾
(1 ±

1

2
tanh(√

𝑐2 − 𝜗

4𝑐2 𝜉)

±
1

2
coth(√

𝑐2 − 𝜗

4𝑐2
𝜉))]

1
2

 ,   (3.14) 

where 𝜉 = 𝑥 − 𝑐𝑡. 

(II) If 𝑏 = 0, then we get the same  

solution (3.10) 

Case 5. 

𝑏 =
−(4𝛾𝑎12 + 3𝜗)

4𝛾𝑎12 ,    𝑎0 = 0,       𝑎1 = ±√
−3𝑐2

4𝛾
,  

 𝑏1 =
−(4𝛾𝑎12 + 3𝜗)

4𝛾𝑎1 ,   𝛽 = 0,   

 𝑐 = ±√
−4𝛾𝑎₁²

3
,                               (3.15) 

where 𝛾 < 0. 

(I) For 𝛾(4𝛾𝑎₁² + 3𝜗) > 0,⇒ 𝑏 < 0, then we have 

the straddled solitons solution: 

𝑢(𝜉) = [√
3(𝜗 − 𝑐2)

4𝛾
(tanh(√

−(𝜗 − 𝑐2)

𝑐2 𝜉)

− coth(√
−(𝜗 − 𝑐2)

𝑐2 𝜉))]

1
2

,   

(3.16) 

Where  

𝜉 = 𝑥 ∓ √
−4𝛾

3
𝑎₁𝑡. 

(II) For 𝛾(4𝛾𝑎₁² + 3𝜗) < 0,⇒ 𝑏 > 0,  then we have 

the periodic solution: 

𝑢(𝜉) = [√
−3(𝜗 − 𝑐2)

4𝛾
(tan(√

(𝜗 − 𝑐2)

𝑐2 𝜉)

+ cot (√
(𝜗 − 𝑐2)

𝑐2
𝜉))]

1
2

 ,  

(3.17) 

where 

𝜉 = 𝑥 ∓ √
−4𝛾

3
𝑎₁𝑡. 

(III) If 𝑏 = 0,  then we get the same solution 

(3.8).  

4. Other Explicit Results for Equation (3.1):  

Here, we utilize a direct approach, employing 

the Lienard equation, to solve Eq. (3.2). 

Consequently, we acquire alternative explicit 

solutions for Eq. (3.1) that diverge from the 

findings obtained in section 3.2. In order to 

achieve this objective, we rephrase Eq. (3.3) in 

the following manner: 

𝑢′′ +
(𝜗 − 𝑐2)

𝑐2 𝑢 +
𝛽

𝑐2 𝑢3 +
𝛾

𝑐2 𝑢5 = 0,                  (4.1) 

if we set: 

e1 =
𝜗 − 𝑐2

𝑐2 ,      𝑒3 =
𝛽

𝑐2 ,        𝑒5 =
𝛾

𝑐2, 

in Eq. (4.1) then we obtain the nonlinear 

Lienard [10]: 

𝑢′′(𝜉) + 𝑒1𝑢(𝜉) + 𝑒3𝑢
3(𝜉) + 𝑒5𝑢

5(𝜉) = 0.        (4.2) 
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 Eq. (4.2) has multiple solutions see [10]. By 

utilizing these solutions, we can obtain the 

following solitary explicit solutions of Eq. (3.1): 

Case 1. 

𝑢(𝜉) = 

±

[
 
 
 
 
 
 

4(𝑐2 − 𝜗)

𝑐2 (
𝛽
𝑐2 +

√3
3

√3𝛽2 − 16𝛾𝜗 + 16𝛾𝑐2

𝑐4 cosh(2𝜉√
−(𝜗 − 𝑐2)

𝑐2 ))

]
 
 
 
 
 
 

1
2

 

(4.3) 

provided that 

 3𝛽2 − 16𝛾𝜗 + 16𝛾𝑐2 > 0  , 𝜗 − 𝑐2 < 0  , 𝑐 > 0.   

 

Case 2. 

𝑢(𝜉) = 

±

[
 
 
 
 
 
 

4(𝑐2 − 𝜗)

𝑐2 (
𝛽
𝑐2 +

√3
3

√16𝛾𝜗 − 16𝛾𝑐² − 3𝛽²
𝑐4 sinh(2𝜉√

−(𝜗 − 𝑐2)
𝑐2 ))

]
 
 
 
 
 
 

1
2

,   

(4.4)   

provided that 

  3𝛽2 − 16𝛾𝜗 + 16𝛾𝑐2 < 0, 𝜗 − 𝑐2 < 0. 

Case 3. 

 𝑢(𝜉) = ± [
2(𝑐² − 𝜗)

𝛽
(1 + tanh(𝜉√

−(𝜗 − 𝑐²)

𝑐²
))]

1
2

,  

(4.5) 

and  

𝑢(𝜉) = ±[
2(𝑐² − 𝜗)

𝛽
(1 + coth(𝜉√

−(𝜗 − 𝑐²)

𝑐²
))]

1
2

,   

(4.6) 

provided that 

3𝛽2 − 16𝛾𝜗 + 16𝛾𝑐2

𝑐4 = 0, 𝜗 − 𝑐2 < 0, 𝛾 < 0,

𝛽 > 0. 

Case 4. 

𝑢(𝜉) = 

±

[
 
 
 
 
 
 

4(𝑐2 − 𝜗)

𝑐2 (
𝛽
𝑐2 +

√3
3

√3𝛽2 − 16𝛾𝜗 + 16𝛾𝑐2

𝑐4 cos(2𝜉√
(𝜗 − 𝑐2)

𝑐2 ))

]
 
 
 
 
 
 

1

2

 

(4.7) 

and 

𝑢(𝜉) = 

±

[
 
 
 
 
 
 

4(𝑐2 − 𝜗)

𝑐2 (
𝛽
𝑐2 +

√3
3

√3𝛽2 − 16𝛾𝜗 + 16𝛾𝑐2

𝑐4 sin (2𝜉√
(𝜗 − 𝑐2)

𝑐2 ))

]
 
 
 
 
 
 

1
2

 

(4.8) 

provided that 

3𝛽2 − 16𝛾𝜗 + 16𝛾𝑐2 > 0, 𝜗 − 𝑐2 > 0. 

We now derive additional solutions for Eq. (3.1) 

using Jacobi-elliptic functions: 

Case 5. 

𝑢(𝜉) = ±[
−3𝛽

8𝛾
(1 + sn (

√3𝛽

4𝑟𝑐√−𝛾
𝜉, 𝑟))]

1
2

  , (4.9) 

provided that 

𝜗 =
3𝛽²(5𝑟² − 1) + 64𝛾𝑟²𝑐²

64𝛾𝑟²
, 𝛽 > 0, 𝛾 < 0. 

If 𝑟 → 1,  then we have the dark-soliton wave 

solution: 
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𝑢(𝜉) = ± [
−3𝛽

8𝛾
(1 + tanh (

√3𝛽

4𝑐√−𝛾
𝜉))]

1
2

  , (4.10) 

Case 6. 

𝑢(𝜉) = ± [
−3𝛽

8𝛾
(1 + cn (

√3𝛽

4𝑟𝑐√𝛾
𝜉, 𝑟))]

1
2

  , (4.11) 

provided that 

𝜗 =
3𝛽²(4𝑟² + 1) + 64𝛾𝑟²𝑐²

64𝛾𝑟²
, 𝛽 < 0, 𝛾 > 0. 

If 𝑟 → 1, then we have the bright-soliton wave 

solution: 

𝑢(𝜉) = ± [
−3𝛽

8𝛾
(1 + sech (

√3𝛽

4𝑐√𝛾
𝜉))]

1
2

  ,         (4.12)  

 

 

Figure 2. The profile of the bright-soliton 
solution (4.12) with 𝑐 = 1, 𝛽 = −2, 𝛾 = 2. 

 

Case 7. 

𝑢(𝜉) = ± [
−3𝛽

8𝛾
(1 + dn(

√3𝛽

4𝑐√𝛾
𝜉, 𝑟))]

1
2

  ,       (4.13) 

provided that 

𝜗 =
3𝛽²(𝑟² + 4) + 64𝛾𝑐²

64𝛾
, 𝛽 < 0, 𝛾 > 0. 

If 𝑟 → 1,  then we obtain as the same bright-

soliton wave solution (4.12). 

5. Conclusions 

The tanh-function expansion scheme and a 

direct approach based on the Liénard equation 

are used in this article to obtain many new 

explicit wave solutions to the nonlinear 

Pochhammer-Chree equation. Comparing our 

new results obtained in this paper with the well-

known results in [17], we conclude that all 

results obtained in article are new and not 

found elsewhere. 2D and 3D graphs of certain 

selected solutions were depicted to show the 

physical structure of different solutions types. 

The scheme employed in this article is effective 

and can be applied to other nonlinear models in 

the field of mathematical physics. Furthermore, 

with the aid of Maple software, we have 

demonstrated that all the solutions obtained in 

this paper satisfy the original governing 

equations. 
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