

 و الهندسة المؤتمر العلمي الدولي الثالث للعلوم

Scientific International Conference in Science & Engineering RD3The

http://bwu.edu.ly/icse2024

 Received 25/07/2024 Revised 16/08/2024 Published 10/09/2024
 bwu.edu.lyicse@ ترسل الورقات كاملة علي *

ICSELibya-2024 100

Designing and Implementing a Self-checking Shifter

Utilizing Berger Code Methodology.
A. M. Ejamaila, Alhadi A. Khalleefahb, A. H. Maamarc

aComputer engineering & IT, College of Technology Sciences, Bani-Walid -Libya
bDepartment of Computer engineering, College of ELECTRONIC TECHNOLOGY, Bani-Walid-Libya
cDepartment of Computer engineering, College of ELECTRONIC TECHNOLOGY, Bani-Walid-Libya

aAdel.m.Ejamail@gmail.com bgrimida2008@gmail.com cAli_h_maamar@yahoo.uk.com

Abstract: Digital systems today are more complex than ever before. The complexity of digital circuits

leads to increased crosstalk, noise, and other potential sources of transient errors during normal

operation. Conventional offline testing procedures cannot ensure location of these issues; they may

be recognized through online or concurrent error detection (CED) strategies. Concurrent error

detection empowers advanced frameworks to approve the exactness of comes about amid standard

movement. Berger Code is prevalent approach for concurrent error detection applications as it

can discover all unidirectional errors in computerized frameworks. This manuscript introduces a

design for self-checking shifter Using Berger code.

Keywords: Berger Code, shift register, Concurrent Error Detection, Two-Rail Checker, Self-checking.

1. Introduction

Concurrent error detection methodologies have

been extensively utilized in the realm of

commercial digital systems since the 1960s [1].

The primary aim associated with the

implementation of concurrent error detection is

to conduct real-time evaluations on the

system's outputs to ensure data integrity by

identifying transient or permanent faults while

the system operates under normal conditions.

The significance of Concurrent Error Detection

spans across a diverse array of applications,

encompassing sectors such as space

technology, avionics, telephone switching

networks, and online transaction processing. A

multitude of real-time error detection

mechanisms can be integrated into a

computing system. These mechanisms

fundamentally rely on redundancy in various

aspects, including hardware replication,

redundant codes, software, and execution

time. Redundancy entails the utilization of

additional resources that surpass the

necessities of the non-verified system [2]. This

paper exclusively focuses on information

redundancy, specifically employing Berger code

checkers within the framework of Totally Self-

Checking (TSC).

2. Shift register

 A shift register comprises a digital circuit that

involves a series of flip flops, in which the

output of one flip flop is linked to the input of

the subsequent flip flop. The information held

in the shift register has the capability to be

transferred from one position to the succeeding

mailto:Adel.m.Ejamail@gmail.com
mailto:grimida2008@gmail.com
mailto:Ali_h_maamar@yahoo.uk.com

Designing and Implementing a Self-checking Shifter Utilizing Berger Code Methodology.

A. M. Ejamail Alhadi A. Khalleefah A. H. Maamar

ICSELibya-2024 101

position. By interconnecting N-flip flops, an N-

bits shift register can be established, with each

flip flop retaining a single bit of data. The data

contained within the shift register is movable

either towards the left or the right.

Fig. 1: shift register.

A left logical shift of one position moves each

bit to the left by one. The vacant least

significant bit (LSB) is filled with zero and the

most significant bit (MSB) is discarded as

shown in Figure 2.

 If X = 011 ,..,,........., bbbb nn is to be shifted

to the left, then all the bits of X are shifted to

the left one positon, and X becomes,

 X= 0,,..,,........., 0121 bbbb nn

 Fig. 2: shift Left register.

A right logical shift of one position moves each

bit to the right by one. The least significant bit

is discarded and the vacant MSB is filled with

zero as shown in Figure 3.

 If X = 011 ,..,,........., bbbb nn is to be shifted

to the right, then all the bits of X are shifted to

the right one place, and X becomes,

 X= 121 .,..........,,,0 bbbb nnn

 Fig. 3: shift Right register.

3. SELF-CHECKING CIRCUITS

Self- checking can be described as the capacity

to automatically confirm the presence of a fault

in logic (such as chips, boards, or assembled

systems) [3]. Circuits with self-checking

capabilities enable real-time error detection,

allowing for the identification of faults while

the circuit operates normally. These circuits

are capable of identifying both temporary and

permanent faults [4]. The concept involves

integrating additional circuitry into the original

functional unit. This supplementary circuit

assesses the functional unit's output to

determine the existence of any errors [5].

Various codes are available for devising self-

checking circuits. This study focuses solely on

separable codes, where the information bits

and check bits are distinctly separated. The

Berger code calculates the quantity of 1's in

the word and represents it in binary form. By

complementing the binary word and appending

Q3 Q2 Q0Q1

D3 D2 D1 D0

1-Bit 1-Bit 1-Bit 1-BitD Qserial Data

Input

serial Data

Output

Parallel Data Input

Parallel Data Output

LSBMSB

B3 B2 B0

LSBMSB

B1 0

B0B1B2 0

B3 B2 B0

LSBMSB

B1

0
B1B2B30

Designing and Implementing a Self-checking Shifter Utilizing Berger Code Methodology.

A. M. Ejamail Alhadi A. Khalleefah A. H. Maamar

ICSELibya-2024 102

the count to the data, Berger codes serve as

optimal systematic AUED (All Unidirectional

Error Detecting) codes. The identification of

unidirectional bit errors is achievable through

its ability to detect instances where one or

more ones transition to zeros, while remaining

unable to identify cases where zeros transition

to ones. In the event of an equal number of bit

transitions from zero to one and one to zero,

the error will not be discerned [6]. For a Totally

Self-Checking (TSC) circuit to function

effectively, a single bit output proves

inadequate due to the inability to detect a

Stuck-at-fault situation on the output yielding

an erroneous "good" output [2, 7, 8, 9].

Typically, the output of a TSC circuit

undergoes encoding utilizing a two-rail (1-out-

of-2) code. The utilization of a two-rail checker

unit (TRC) is essential in the comparison of two

complementary codewords to ascertain the

validity of the output from the functional

circuit. [2]. The block diagram in figure 4

shows the proposed design to achieve the self-

checking checker for the shift register. The

proposed 4 Bit shift Left/Right register it looks

like a serial-in/ serial-out shift register with

taps added to each stage of Input and output.

Serial data shifts in at Din (Serial Input). After

a number of clocks equal to the number of bits

in the shift register, the first Din bit data

appears at (Q4).Entry of the four bits (1001)

into the register, beginning with the right most

bit. Since data are entered into the register, the

Check Symbol Generator (CSG) generate the

code word for data, the 3-bit register will store

the complementary code word which will be

used in two rail inputs for comparing.

Fig. 4: 4 Bit shift Left/Right register.

Since data are entered into the register, the

CSG generates the code word of the data.

The 3-bit register will store the complementary

code word, since the information bit is

expected to be discarded during right/left shift

which needs to change the stored code word in

the 3-bit register according to the following:

Shift left: If SL=1 and MSB=0, then the number

of 1's in the code word will be as it is before

shifting to the left, this means that the check

symbol will not change if the code word is error

free. If SL=1 and MSB=1,a new code word will

be generated as the number of 1's decreased

by 1, a new generated code word will be stored

in the 3-bit register. Shift right: If SR=1 and

LSB=0, the stored code word will remain

stored. If SR=1 and LSB=1, a new generated

code word will be stored in the 3-bit register.

The process of conducting checks can be put

into action as demonstrated by the visual

representation provided in figure 5. The

various configurations are translated into

Verilog Hardware Description Language (HDL)
to facilitate both simulation and synthesis
processes. The waveform representations

Q1

G1 G2 G5G4G3 G10G9G8G7G6

A1 A2 A3

D in

CLK

SR

SL

CLK CLK CLK CLK

Q1 Q2

Q2

Q4

Q4Q3

Q3D1 D2 D3 D4

FF0 FF1 FF3FF2

TOW RAIL

G

F

Berger code generator

 CSG

3-BIT REGISTER

 (PIPO)

SEL2

SEL1

A1
A4

Designing and Implementing a Self-checking Shifter Utilizing Berger Code Methodology.

A. M. Ejamail Alhadi A. Khalleefah A. H. Maamar

ICSELibya-2024 103

depicted below exhibit the results generated by

the Simulation Processor. Specifically, the

waveform in Figure 6 illustrates the

functioning of the Reset register, and the

subsequent execution of either the shift left or

shift right operations on the input data that

has been loaded. Consequently, the

subsequent signals can be observed to flow

accordingly: CLK: The signal denoting the

passage of time within a system. Din: The

input data being fed into the register.Q1: The

first bit of the output data representing the

value of the initial bit in the register.Q2: The

second bit of the output data indicating the

value of the second bit in the register. Q3: The

third bit of the output data signifying the value

of the third bit in the register.Q4: The fourth

bit of the output data showcasing the value of

the fourth bit in the register. The table 1

illustrates the control state for the utilized

register. Figure 7 presents the waveform of the

Berger Code check symbol Generator for a 4-

bit system, where the input for CSG is the

output for the 4-bit shifter register,

encompassing signals such as CLK for the

clock signal. Q1: The first bit of the output

Fig. 5: A flowchart provides a visual

representation of the sequential steps.

Fig. 6: The waveform depicts the process of

transferring data into the shifter register

.

Table 1: control state for the register.

Function RR RL

Resetting register 0 0

Shift data right 1 0

Shift data left 0 1

Load data into register 1 1

data displaying the value of the initial bit in the

register. Q2: The second bit of the output data

showcasing the value of the second bit in the

register. Q3: The third bit of the output data

representing the value of the third bit in the

register.

Fig. 7: The waveform exhibits the Berger code

check symbol generator.

Start

Data in
B1

changed

Yes

No

New CS generated
(NCS) at B2

New
Data

pushed
into B1

?

No

Yes

Save NCS as
RFCS in B3

Shift Left
?

Yes No

LSB in
B1 =1 ?

MSB in
B1 =1 ?

RFCS=RFCS-1 RFCS=RFCS

RFCS=NCS

NoYes

NoYes

No Error
Error

Detected

Yes No

RFCS=RFCSRFCS=RFCS-1

Yes No

Error
Detected

No Error

RFCS=NCS

Designing and Implementing a Self-checking Shifter Utilizing Berger Code Methodology.

A. M. Ejamail Alhadi A. Khalleefah A. H. Maamar

ICSELibya-2024 104

Q4: The fourth bit of the output data indicating

the value of the fourth bit in the register.

Sig21: The first bit of the CSG output revealing

the value of the initial bit in the CSG output.

Sig22: The second bit of the CSG output

displaying the value of the second bit in the

CSG output. Sig23: The third bit of the CSG

output signifying the value of the third bit in

the CSG output. The waveform in Figure 8

exhibits the process of loading data into the

register, generating the check symbol bits

word, pushing the complement of the check
symbol bits word to a 3-bit register, shifting

the register left/right, transmitting data to a
two-rail checker, and finally obtaining the

result.

Fig. 8: The waveform portrays the simulation

of the shifter implementation processor.

4. Conclusion

This manuscript introduces a methodology

for the implementation of fault-tolerant

shifters utilizing Berger code. Within this

framework, the Berger code generator is

employed to produce check bits for every

input word in the shift register. This

ensures that in the absence of any

discrepancies between the information bits

and the number of 1's, errors remain

undetected. Subsequent to the left/right

shifting operation of the register, the

Berger code generator is utilized to

generate check bits for the respective word.

To identify faults post-operation, the stored

check bits along with their inverted

counterparts are directed to the Two-rail

checker. Through this approach, the

design attains heightened reliability levels

while maintaining reasonable hardware

expenditure. The system is proficient in

detecting all instances of Unidirectional

Error within the shifter.

5. References

 [1]. Subhasish Mitra, "Diversity Techniques for

Concurrent Error Detection", Technical Report,

Center for reliable computing, May 2000.

[2] P. K. Lala. Self-Checking and Fault-Tolerant

Digital System Design. Morgan Kaufman Publishers,

San Francisco, 2001.

[3] Huda Abugharsa, and Ali Maamar," Self Checking

Systolic LIFO Stack",7th WSEAS Int. Conf. on

Instrumentation Measurement, Circuits and Systems

(IMCAS '08), Hangzhou, China, April 6-8, 2008.

[4] KHADIJA F. O. ALGHEITTA. AMAL J. MAHFOUD.

ALI H. MAAMAR. Design of a Self-Checking Up

Counter. International Conference on Advanced in

Computing, Engineering and Learning Technologies,

Abu Dhabi, UAE, 2013.

[5] Mustafa Abd-El-Barr," Design and Analysis of

Reliable and Fault-Tolerant Computer Systems ",

Imperial College Press, 2007, ISBN 1-86094-668-2.

[6] VARADAN SAVULIMEDU VEERAVALLI. Diagnosis

And Error Correction For A Fault-Tolerant Arithmetic

And Logic Unit For Medical Microprocessors,

Graduate School- New Brunswick Rutgers, The State

University of New Jersey October, 2008.

[7] B. W. Johnson. Design and Analysis of Fault

Tolerant Digital Systems. Addison-Wesley, Reading,

MA, 1989.

[8] D. K. Pradhan. Fault-Tolerant Computing: Theory

and Techniques, volume I. Prentice Hall, Englewood

Cliffs, New Jersey, 2003.

[9] T. R. Stankovic, M. K. Stojcev, and G. Ordjevic.

Design of Self-Checking Combinational Circuits. In

Proc. of the International Conf. on

Telecommunications in Modern Satellite, Cable and

Broadcasting Services, volume 17, pages 763-768,

October 2003.

