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Abstract
Analysing the wind speed distribution and the likelihood of its recurrence throughout the year is crucial for

understanding the wind sources and their characteristics at a specific site. This initial and vital step assists in
estimating the available energy and guides to the selection of suitable wind turbines and related equipment for
wind farms. In this paper, wind speed data was collected over a one—year period in Magron city to evaluate the
two Weibull parameters (shape and scale) using five different methods: graphical, empirical, moments, maximum
likelihood, and energy pattern factor. These calculations were conducted under different atmospheric stability
conditions namely stable, neutral, and unstable conditions. To assess the reliability of these methods, three
statistical analyses were applied: root mean square error, correlation coefficient, and the Chi-Square Error. The
accuracy of calculating Weibull parameters varies with season and atmospheric stability conditions. The empirical
method demonstrates superior accuracy in estimating Weibull parameters for stable conditions during most
seasons, while the maximum likelihood method performs well for unstable conditions, and the accuracy of neutral
conditions varies depending on the season. Considering the varying accuracy of different methods across different
atmospheric stability conditions and seasons, careful selection of appropriate methods is vital for reliable estimation
of Weibull parameters and therefore, assessment of wind energy potential.

Keywords: Weibull function, shape and scale Parameters, atmospheric stability conditions.).

Introduction:

Energy plays a pivotal role in the development of human life, contributing to the progress of civilization and the
economy. The current demand for energy is on a significant upswing and is projected to double within the next 20
years. M Transitionally, fossil fuels like oil, gas, and coal have been the primary sources of energy, but their
consumption results in the emission of gases that directly impact the atmosphere, leading to temperature rise and
the melting of polar ice, with tangible consequences for human life. Moreover, besides the environmental harm,
fossil fuels are finite resources that may be exhausted in the foreseeable future. ?)

Addressing these challenges involves an increasing focus on investigating novel, sustainable, and eco—friendly
sources of energy. ) This led to substantial efforts and advancements in the search for alternatives to conventional
energy sources. Wind energy, in particular, has garnered significant attention and development as a promising
renewable and clean energy source, offering a potential solution to our energy needs in the future.

There is a strong relationship between the cube of wind speed and the quantity of energy collected. Therefore,
understanding the characteristics of the wind resource is essential for making use of wind energy, installing wind
turbines, determining if wind farm projects are financially feasible and refining wind turbine design. It becomes
essential to appropriately define the wind speed at a specific location as a result. )

The evaluation of wind energy involves a comprehensive analysis that has a substantial impact on choices about
the construction of wind farms or the installation of wind turbines. The focus of research over the last 2() years has

been on developing statistical models that more accurately represent the frequency distribution of wind speeds. )
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This entails determining the parameters of a probability density function that characterizes the distribution of
various wind speeds at a certain point. These initiatives are essential to the thorough evaluation of wind resources
and the estimation of wind potential at a given site. ©)

A range of probability density functions were used to illustrate wind speed frequency distributions. ™ For assessing
wind speed data, the two—parameter Weibull Probability Distribution Function is highly suggested and widely
recognized due to its better fit. Because it captures observed probability density distributions more effectively than
other statistical functions, it is often employed in wind energy research. & %10

A probability density function that describes the frequency of wind speed and a cumulative distribution that shows
the likelihood of reaching a specific wind speed are what define the Weibull distribution. The formula takes two
inputs: the dimensionless shape parameter (k) which can be determined in a number of ways, and the scale
parameter (c), which is measured in meters per second (m/s).

The two Weibull parameters (shape and scale) can be computed more easily using a number of numerical
techniques that have been suggested in the literature. The maximum likelihood method, the modified maximum
likelihood approach, the moment method, the energy pattern factor method, the empirical method, and the
graphical method are some of these techniques. )

Multiple research studies have been employed various statistical analyses to estimate wind velocity distributions.
Maja Celeska et al. ®) examined the power density approach, empirical method, maximum likelihood method, and
method of moments in wind energy analysis to determine the Weibull wind speed distribution parameters. Using
wind speed data from the northern region of the Republic of Macedonia (August 2012 to March 2015) to evaluate
accuracy using statistical analysis, they discovered that the maximum likelihood technique produced the best
accurate Weibull distribution for the particular site.

Six numerical techniques were used by Kasra Mohammadi et al. () to assess the shape (k) and scale (c) Weibull
factors. The purpose of this assessment was to determine the wind power density at four stations in Alberta,
Canada, utilizing three years' worth of hourly wind speed data that was collected at a height of 10 meters (January
2012 to December 2014). The study found that the accuracy of wind power density estimates computed using the
Weibull function was greatly affected by the use of different techniques to estimate Weibull components. In
contrast, the graphical technique performed poorly across all stations. The empirical methods of Justus, Lysen,
energy pattern factor, and maximum likelihood showed positive performance. Furthermore, Justus's empirical
approach performed somewhat better.

Alhassan Ali Teyabeen et al. (M used seven numerical techniques to calculate the Weibull parameters for wind
speeds measured at 10, 30, and 50 meters above sea level at Zuwara, Libya in 2007. The techniques used were
energy pattern factor, graphical, standard deviation, empirical (Justus and Lysen), maximum likelihood, and
modified maximum likelihood. According to their results, the maximum likelihood approach had superior accuracy at

10 meters, while the empirical approaches of Justus and Lysen showed the highest accuracy at 30 and 50 meters.
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On the other hand, the recorded wind speed histogram at all heights was poorly fitted by the curve using the
graphical technique.

On Jeju Island, South Korea, Dongbum Kang et al. (1%

used Weibull distribution parameters to analyze wind speed
based on real wind speed data collected over a five-year period from nine sites with different topographical
circumstances. They contrasted Weibull parameters obtained using six different techniques: maximum likelihood,
modified maximum likelihood, graphical, empirical, moment, and energy pattern factor. Four accuracy tests were
used in the study to determine the best approach. The results indicated that, whilst the graphical technique
exhibited reduced efficacy, the moment method effectively estimated the shape (k) and scale (c) parameters, giving
a satisfactory match for Weibull distribution curves for wind speed data. Additionally, the study discovered that the
approaches' accuracy ratings stayed true under a variety of topographical circumstances, indicating that no method
showed.

In four Indian towns, Syed Rahman and Himadri Chattopadhyay ('*) determined the best locations for wind energy
generation by calculating the Weibull distribution to describe the wind's speed and type. To determine the Weibull
parameters, they used the following five methods: the energy variance technique, the maximum likelihood method,
the power density method, the empirical approach, and the method of moment. The findings showed that in the
cities of Kolkata and Guwahati, the energy variance approach produced the lowest amount of inaccuracy. The
power density approach proved to be the most successful for Imphal city, while the greatest probability strategy
offered the best fit in Shillong.

The effectiveness of twelve numerical approaches for figuring out the size and shape parameters of the Weibull
distribution function—which is used to calculate the wind power density in two stations across the Republic of
Korea—was evaluated by Sangkyun Kang et al. 14). Alternative maximum likelihood, equivalent energy, graphical,
modified energy pattern factor, empirical (Justus and Lysen), energy pattern factor, maximum likelihood, moment,
modified maximum likelihood, power density, and standard deviation were among the techniques used. The
findings showed that there were significant inaccuracies in the approaches for estimating the distribution of wind
speed, including graphical, energy pattern factor, equivalent energy, and alternative maximum probability. On the
other hand, the moment and standard deviation techniques, as well as the empirical approaches of Justus and
Lysen, showed the highest accuracy in this context.

Using monthly and annual wind speed data from 2011 to 2016, Igrar Hussain et al. (!> examined the generation of
wind power in four coastal locations of Pakistan. Eight numerical techniques were used in the study to estimate the
two Weibull parameters: least squares regression, graphical, empirical, wasp algorithm, energy pattern, moment,
maximum likelihood, and energy trend. To evaluate how accurate the procedures were, three statistical error tests
were used. The results showed that the graphical and energy trend approaches performed poorly at every location
under investigation.

Observations from previous studies and a comprehensive review of various researches indicate a notable variation

in the accuracy of the methods employed to determine the two Weibull parameters across different sites. This
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discrepancy highlights the dependency of Weibull parameters on the specific characteristics and wind patterns of
each site. It is noteworthy that many studies overlooked the impact of atmospheric stability conditions on the two
Weibull parameters.

The primary aim of this paper is to identify the most effective methods for achieving the best fit of Weibull
distributions to wind speed data of a specific site. The study examines five numerical methods—graphical, empirical,
moments, maximum likelihood, and energy pattern factor methods—-utilized for estimating Weibull function
parameters (shape and scale). Importantly, the investigation takes into account the influence of atmospheric
stability conditions on the accuracy of these methods.

2. Methodology and Theoretical background

To generate wind power, a range of features need to be studied. The most important factor is the wind speed. The
wind fluctuates in speed in both space and time. This difference in wind speed is influenced by a number of
elements, including topography and wind. As wind speed is considered a random quantity, statistical analytic
approaches are employed to handle it. The best methods for describing the random variation in wind speed at a
location are the Weibull distribution function and atmospheric stability. (16)

In this study, wind speed data spanning a one-year period (Jan. 2003 to Dec. 2003) was collected from a
measurement station installed in Magron city, located on the Mediterranean Sea coast in north western Libya. The
site served as a case study, and data was gathered at three different heights (10, 20, and 40 meters a.g.l.). The
study estimated the shape (k) and scale (c) parameters of Weibull distribution of the wind speed data using five
methods, incorporating considerations for atmospheric stability conditions. The suitability of the parameters was
assessed through three statistical analyses: the Root Mean square error (RMSE), the Correlation Coefficient (R2)
and the Chi-Square Error (xz), as follows.

2.1 The Weibull distribution function

One technique for figuring out the wind speed distribution is to utilize the two parameters in the Weibull distribution
function, commonly known as the Probability Density Function (PDF). It is dependent upon the data's statistical
analysis. Wind power prediction and pattern analysis both benefit from an understanding of the Weibull distribution.

It can provide accurate fits to data on wind speed observations. Mathematically, it is expressed as: )

f=£(2) " ew (- (2)) ()

Where f(u) is the likelihood or frequency that a certain wind speed will occur. The scale factor, u, and c, have a
strong relationship with the mean wind speed. A stronger wind speed is indicated by a larger value of c. The
dimensionless form factor, or k, characterizes the distribution's shape and indicates wind stability; the greater k's
value, the more stable wind speed. The statistical analysis of the site's observed wind speed data can yield these
two parameters.

The histogram is one tool for describing observed wind speed data over time. Each wind speed bin has a width of
one meter per second. The wind speeds are separated into these bins. For each wind speed bin, the histogram

shows how frequently the wind is blowing. (!
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2.2 Atmospheric stability

Atmospheric stability is a way to assess how turbulent the vertical movement of air is near the earth’s surface.

Turbulence promotes mixing and dispersion, so understanding atmospheric stability is crucial for describing the

wind patterns in the Atmospheric Boundary Layer. (1)

There are three main categories for classifying atmospheric stability conditions: Neutral, Stable, and Unstable,

which depend on factors like heat flux and temperature. Various methods exist to determine and classify these

conditions, and one such method is the wind shear coefficient. (!8)

2.3 Wind Shear Coefficient
The Wind Shear Coefficient (o) can be calculated at two heights using the power law model, and it can be directly

calculated using equation ()

_ In(ra/1y) (3)

" In(zz/21)

The recorded wind speeds at heights z; and z,, respectively, are represented by the variables V, and V, in this

equation. The vertical distance between the two heights, atmospheric stability, and the terrain of the area all have

(19)

an impact on the wind shear coefficient (a). It is used to categorize the state of atmospheric stability. The

requirements for each atmospheric stability regime as they are used in the literature are listed in Table (1). (20)

Tablel: Stability classification based on wind shear exponent.

Stability Class Wind shear exponent, ¢
Strongly stable a>0.3
Stable 0.2<a<0.3
Neutral 0.1 <a<0.2
Unstable 0.0<a<0.1
Strongly unstable a<0.0

2.4 Methods of Estimating the Two Weibull Parameters

Various methods can be employed to determine the Weibull distribution parameters, ¢ and k, based on the
available wind data. In this study, five methods were utilized: the graphical method (GM), empirical method (EM),
method of moments (MOM), maximum likelihood method (ML), and energy pattern factor method (EPF). These
methods were employed to calculate the parameters and identify the most accurate estimation for the Weibull
parameters in Magron city.

2.4.1 Graphical Method (GM)

The graphical method (GM) involves organizing wind speed data in a cumulative frequency distribution format by
grouping it into bins. By applying a double natural logarithm transformation to Equation 2, and then Equation 3 is
produced, which represents a straight line:

In[—In(1 = F(w))] = kin(u) — kin(c) 4)
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The c and k parameters are calculated by plotting the In(u) on x axis against In(-In(1-F(u))) on y axis, resulting in
a straight line. The slope of the line corresponds to k, while the y— intercept represents (-k In c), and therefore, ¢
can be calculated. ()
2.4.2 Empirical Method (EM)
In the empirical method (EM), the k and ¢ parameters are estimated using the average wind speed (%) and
standard deviation (o) of wind speed data. Equations 4 and 5 are used for the calculation: @1
k= (0/17)—1.089 (5)
c=u/T(1+1/k) (6)
Here, T is the gamma function.
2.4.3 Method of Moments (MOM)
The method of moments (MOM) is a commonly used approach to estimate the ¢ and k parameters. It relies on the
mean wind speed and standard deviation of wind data. The c parameter is calculated using equation (5), while the

k parameter is determined using Equation (6) @1

1.0983
K = (0.9874) (7)

<l 9|

2.4.4 Maximum Likelihood Method (ML)

The maximum likelihood method (ML) involves numerical iteration to calculate the ¢ and k parameters when wind

speed data is in time series format. The following equations are utilized: 2

-1
(SR ufin@y) ¥R, Inwy)
1
1 k
¢ = (2 u) ©)

Here, u, represents the wind speed at /—#h point and n is the number of nonzero wind speed data.
2.4.5 Energy pattern factor method (EPF)

The energy pattern factor method (EPF) relies on average wind speed data and provides a straightforward

implementation without complex computations. The k parameter is estimated using the following equation: ©)

_ 3.69
k=1+ {—(Epf)z} (10)

Where E; is the energy pattern factor obtained numerically from the equation:

1¢n 3 —

_Zi=1ui u3
Ef="T—=== 11
pf (% ?=1ui)3 3 ( )

Here, u3 represents the mean of the cube of wind speed, and %3 represents the cube of the mean speed.

Once the energy pattern factor is calculated, the c parameter is estimated as follows: 23)

c=(yr, )" (12)
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2.5 Statistical Error Analysis (Goodness of Fit)

In order to assess the performance and evaluate the most suitable method for estimating the five Weibull
distribution parameters, the study conducted a statistical error analysis using three measures: root mean square
error (RMSE), correlation coefficient (Rz), and chi-square tests (xz)

2.5.1 The Root Mean Square Error (RMSE)

The RMSE quantifies the deviation between the probability value calculated from Weibull distribution and the actual
wind speed values. A smaller RMSE value indicates a better fit. It is calculated using the following formula: (2)

RMSE = [T, (y; - xi)z]l/z

(13)
Where, y; represents the actual wind speed probability value, x; is the probability value calculated from Weibull
distribution, and N is the number of observations.

2.5.2 The Correlation Coefficient (R?)

The correlation coefficient determines the linear relationship between the calculated values from the Weibull
distribution and the values received from the measured data. lts value ranges from 0 to 1, with 1 indicating a
23)

perfect fit. The correlation coefficient is determined using the following equation: (

L iz 2 -E L (vi—xp)?
RZ — &i=1Vi74 =1\ i 14
L i-z))? (14)

Where, z represents the mean value of actual data.

2.5.3 The Chi-Square Tests ( x?)

The chi—square test assesses the deviations between the actual data values and the values calculated from the
24)

Weibull distribution function. It is calculated using the following formula: (

2 _ Z{\I:l(y?—xi)z (15)

Xj

X
Here, yi represents the actual data value, xi is the value calculated from the Weibull distribution, and N represents
the number of observations.
3. Results and Discussion
The methodology involved in this study focuses on analysing wind speeds in Magron city, situated on the coast of
the Mediterranean Sea in north western Libya. The average wind speeds for three different heights above ground
level (10, 20 and 40m) were utilized.
This research utilized five different methods, mentioned above, to determine the values of shape and scale
parameters for the Weibull distribution function under various atmospheric stability conditions. The suitability of
these parameters was assessed by conducting three statistical analyses. To assess the effect of the atmospheric
stability conditions on the Weibull parameters, the study employed seasonally averaged wind speed data. Table (1)
was used to classify the conditions based on the wind shear coefficient, which was calculated using equation (3).
The shape and scale parameters for the Weibull distribution function were then calculated using equations (4) to

(12) through the five different methods.
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Looking at Table (2) the Weibull parameter estimates of (‘k’ and ‘c’) are provided for each level of atmospheric
stability conditions, along with the methods of estimation of these parameters (GM, EM, MOM, ML, and EPF). For
the summer season, the values of ‘k’ range from approximately 3.07 to 4.52, while ‘c’ ranges from 6.92 m/s to
8.15 m/s. These values indicate the shape and scale of the Weibull distribution for each atmospheric stability
condition during the summer.

A similar pattern was observed in the autumn season with three classes of atmospheric stability conditions. The
parameter estimates of ‘k’ range from approximately 3.24 to 4.17, and ‘c’ range from 6.92 m/s to 9.15 m/s. It
could be noticed that the autumn season experiences similar levels of atmospheric stability conditions as summer
but with some variations in the Weibull parameters values.

The table also provides data for the winter and spring seasons. These seasons exhibit a similar pattern of
atmospheric stability conditions levels and corresponding Weibull parameter estimates. The values for ‘k’ range
from approximately 3.33 to 4.18, while ‘c’ range from 5.84 m/s to 8.08 m/s.

Comparing the different methods of estimation within each season, we can observe some variations in the Weibull
parameters’ estimates. However, it is important to note that the magnitude of these variations is relatively small,
indicating that the estimation methods yield consistent results overall.

In conclusion, to select the most accurate parameters for all seasons and atmospheric stability conditions,
additional analysis was conducted using the root means square error (RMSE), correlation coefficient, and the chi-
square test. These metrics serve to evaluate the goodness—of—fit and reliability of the estimation methods. A higher
correlation coefficient indicates a stronger linear relationship between the estimated parameters and the observed
data, suggesting a more accurate fit. Conversely, lower values of RMSE and the chi-square test indicate better
agreement between the estimated parameters and the actual values, reflecting greater accuracy. By considering
the highest correlation coefficient along with the lowest values of RMSE and the chi-square test, we can identify
the estimation method consistently exhibiting the best performance across all seasons and atmospheric stability
conditions. The comprehensive evaluation aids in selecting the most reliable method for estimating atmospheric
stability conditions and provide more confidence in the obtained results.

Table2: Seasonal estimated Weibull parameters at different atmospheric stability conditions.

Season Summer Autumn
ASC Stable Neutral. Unstable Stable Neutral. Unstable
Weibull Parameters| k c k c k c k c k c k ®

GM 4.5214.1713.07|7.0813.02 8.15]15.17|4.8014.00 | 5.46 | 3.51 | 7.66
EM 4.3314.2013.49|7.0313.27|8.13]4.82|4.83|4.04 |5.47|3.34|7.73
MoM 4.3514.2013.49|7.0313.278.13]4.84|4.8314.05|5.47|3.34|7.73
ML 4.05|4.2013.70[7.01 |3.47|8.12§4.45|4.84|4.08 |5.47|3.37|7.75
EPF 3.5314.1313.2416.92|3.11|8.03}3.69 | 4.75]3.45|5.38 | 3.08 | 7.66

Method of
Estimation
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Season Winter Spring
ASC Stable Neutral. | Unstable Stable Neutral. | Unstable
Weibull Parameters| k c k c k c k c k c k c
GM 4.1815.8513.99|7.5313.666.95]4.65|5.32|3.76 | 8.08 | 5.35|7.23
S .E EM 3.87(5.9114.00(7.533.56|7.00§4.03|5.42|3.47|8.16|5.16|7.26
;é :g MoM 3.87(5.9114.01|7.53|3.56|7.004.04|5.42|3.47|8.16]5.18 | 7.25
= E ML 3.69(5.9214.01(7.533.62|7.013.56|5.43|3.37|8.17|4.92|7.26
EPF 3.335.84|3.43|7.413.22|6.91|3.34|5.38|3.128.09 | 3.81 | 7.10
Table3: Statistical error analysis values for summer at different ASCs.
Stable atmospheric
ASC Neutral atmospheric condition | Unstable atmospheric condition
condition
Statistical RMSE R? x> RMSE R? x> RMSE R x’
Analysis
s GM | 0.55938 | 0.93144 | 0.31406 | 0.56950 | 0.98371 | 0.32734 | 0.58855 | 0.98702 | 0.34740
E EM | 0.55376 | 0.93787 | 0.30778 | 0.57827 | 0.97497 | 0.33750 | 0.59473 | 0.98329 | 0.35474
;‘f MoM | 0.55389 | 0.93753 | 0.30792 | 0.57829 | 0.97495 | 0.33752 | 0.59468 | 0.98332 | 0.35468
é ML | 0.55426 | 0.94531 | 0.30834 | 0.58191 [ 0.97027 | 0.34175 | 0.59836 | 0.97990 | 0.35908
g EPF | 0.57044 | 0.95461 | 0.32660 | 0.59001 | 0.98072 | 0.35134 | 0.60200 | 0.98612 | 0.36346

Table 3. lllustrates the statistical analysis of the summer at different atmospheric stability conditions. Based on the
provided data, for the stable condition, the EPF method tends to perform the best with the highest R? values of
0.95461, indicating a better fit to the data compared to other methods. However, the EPF method also has a
slightly higher RMSE value of 0.57044, indicating a slightly higher average difference between predicted and actual
values. If we consider the two factors (RMSE and XZ) the EP method has the values 0.55376 and 0.30778,
respectively. These are the smallest values among all the methods indicating a better fit to the data. Therefore, the
EP method is selected as the best—fit method for stable atmospheric conditions. On the other hand, the graphical
method tends to give the highest R? and smaller values of RMSE and X for both neutral and unstable conditions,
which represents the best-fit in these conditions.

For the autumn season, the results are shown in table 4. It demonstrates that the empirical method produces
highly accurate outcomes under stable and neutral conditions. Specifically, for stable conditions, the smallest
values of RMSE and X are (0.55666 and (0.31072, respectively. Similarly, for the neutral conditions, the empirical
method yields the smallest values of RMSE (0.56999) and X (0.32737). Conversely, in unstable conditions, the
maximum likelihood method emerges as the most effective, yielding the best values of RMSE (0.57474) and X

(0-33129). In summary, the empirical method proves robust for stable and neutral conditions.
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Table 4: Statistical error analysis values for autumn at different ASCs.

Stable atmospheric
ASC Neutral atmospheric condition | Unstable atmospheric condition
condition
Statistical
RMSE R? x> RMSE R? x> RMSE R? x*

Analysis

g GM | 0.56465 | 0.93183 | 0.31971 | 0.57101 | 0.97108 | 0.32855 | 0.58416 | 0.98578 | 0.34224
_g EM | 0.55666 | 0.94154 | 0.31072 | 0.56999 | 0.97043 | 0.32737 | 0.57588 | 0.98779 | 0.33261
?

E MoM | 0.55688 | 0.94108 | 0.31097 | 0.57013 | 0.97029 | 0.32753 | 0.57587 | 0.98780 | 0.33259
[3)

= ML | 0.55672 | 0.94955 | 0.31080 | 0.57014 | 0.96986 | 0.32754 | 0.57474 | 0.98740 | 0.33129
=

§ EPF | 0.57779 | 0.95844 | 0.33476 | 0.58251 | 0.97803 | 0.34191 | 0.58073 | 0.99030 | 0.33824

Table 5 summarizes statistical analysis errors between the five methods in winter. The table reveals that the

maximum likelihood method consistently delivers accurate results in both stable and unstable conditions. In stable

conditions, the method achieves RMSE and X* values of (0.55930 and 0.31372, respectively. In unstable

conditions, it achieves the smallest RMSE (0.57140) and X of (0.32914) values. On the other hand, for neutral

conditions, the empirical methods remains the most effective, with RMSE and X* values of 0.57100 and 0.32726,

respectively. In summary, the maximum likelihood method excels in stable and unstable conditions, while the

empirical method continues to be optimal for neutral conditions.

Table 5: Statistical error analysis values for winter at different ASCs.

Stable atmospheric
ASC Neutral atmospheric condition Unstable atmospheric condition
condition

Statistical

RMSE R? x> RMSE R? x’ RMSE R? x*
Analysis
g GM 0.56866 | 0.94394 | 0.32431 | 0.57101 0.96667 0.32727 0.57862 | 0.98273 | 0.33751
_E EM 0.55984 | 0.95336 | 0.31432 | 0.57100 | 0.96641 0.32726 | 0.57204 | 0.98455 | 0.32987
k]
L-'f MoM | 0.55990 | 0.95323 | 0.31439 | 0.57111 0.96626 0.32739 0.57207 | 0.98453 | 0.32990
o
= ML 0.55930 | 0.95706 | 0.31372 | 0.57133 0.96611 0.32764 | 0.57140 | 0.98393 | 0.32914
(=
§ EPF | 0.57088 | 0.96018 | 0.32685 | 0.58441 0.97595 0.34282 0.57973 | 0.98691 | 0.33879

Table 6. Presents the results of statistical analysis obtained for the five methods of obtaining Weibull parameters in

Spring, where it is shown that the maximum likelihood method is the best method in estimating the Weibull

parameters for neutral and unstable conditions, while for stable condition, the empirical method is ranked first.
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Table 6: Statistical error analysis values for spring at different ASCs.

Stable atmospheric

ASC Neutral atmospheric condition | Unstable atmospheric condition
condition
Statistical
RMSE R? x> RMSE R? x> RMSE R? ¥
Analysis

GM | 0.55436 | 0.87737 | 0.30840 | 0.56686 | 0.95640 | 0.32280 | 0.56605 | 0.95258 | 0.32176

EM | 0.53818 | 0.90348 | 0.29065 | 0.55915 | 0.96476 | 0.31407 | 0.56114 | 0.95656 | 0.31621

MoM | 0.53822 | 0.90324 | 0.29070 | 0.55916 | 0.96475 | 0.31408 | 0.56144 | 0.95608 | 0.31655

ML | 0.54109 | 0.91557 | 0.29381 | 0.55833 | 0.96684 | 0.31315 | 0.56105 | 0.96089 | 0.31611

Method of Estimation

EPF | 0.55095 | 0.91666 | 0.30462 | 0.56655 | 0.96893 | 0.32244 | 0.58614 | 0.97500 | 0.34500

Table 7 displays the results and statistical analysis of Weibull parameters under various atmospheric stability
conditions for the yearly mean wind speed. The maximum likelihood method proves to be the optimal fitting
approach for stable and neutral conditions, with an RMSE of 0.55096 and X of 0.30442 for stable conditions, and
the smallest values of RMSE (0.55982) and X (0.31529) for neutral conditions. Conversely, the graphical method
yields the most accurate results for unstable conditions, with RMSE of 0.57316 and ) of 0.32996.

In conclusion, the maximum likelihood method excels in stable and neutral conditions, while the graphical method
stands out for unstable conditions.

Table 7: Yearly Weibull parameters and statistical analysis at different ASCs.

Stable Weibull
Statistical Analysis
atmospheric Parameters
condition k c RMSE R? x>
g GM 7.43 5.13 0.56643 0.94827 0.32176
E EM 7.06 5.18 0.55283 0.95761 0.30650
_E_’ MoM 7.12 5.17 0.55339 0.95672 0.30712
é ML 6.16 5.19 0.55096 0.96878 0.30442
g EPF 4.14 5.05 0.59160 0.97857 0.35099
Neutral Weibull
Statistical Analysis
atmospheric Parameters
condition k c RMSE R? x>
GM 7.12 6.40 0.57067 0.96845 0.32762
g é EM 6.87 6.44 0.56221 0.97184 0.31798
g § MoM 6.93 6.44 0.56285 0.97121 0.31871
ML 6.44 6.45 0.55982 0.97647 0.31529
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EPF 4.13 6.28 0.59549 0.994584 0.35674
Unstable Weibull
Statistical Analysis
atmospheric Parameters
condition k c RMSE R? x°
g GM 8.30 7.34 0.57316 0.93623 0.32996
E EM 8.47 7.34 0.57429 0.93371 0.33126
;u_, MoM 8.56 7.33 0.57548 0.93251 0.33264
é ML 8.77 7.33 0.57701 0.92927 0.33441
g EPF 4.31 7.13 0.61249 0.99282 0.37679

The scale and shape parameters have been determined for each atmospheric stability condition using the accurate
fitting method to plot the histogram of the actual frequency distribution of diurnal wind speed for mean yearly wind

speed with the Weibull distribution function (PDF), which is illustrated in Figure 1.
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Figure 1: the yearly histogram with the PDF for stable, neutral, and unstable conditions
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4. Conclusion
According to the presented results, the five different methods that were mentioned in section 2 to calculate the
shape (k) and scale (c) factors of the Weibull distribution function, the following conclusions can be drawn from this
paper.
1- Analysing the seasonal averaged wind speed data using the five proposed methods under different atmospheric
stability conditions reveals that the empirical method yields the most precise results for stable condition across
most seasons. The maximum likelihood method performs best under unstable conditions, while for neutral
conditions; different methods show the highest accuracy depending on the season. This suggests that the choice
of method should be tailored to specific atmospheric stability conditions when calculating Weibull distribution
parameters.

2- Examining the yearly averaged wind speed data using the five methods indicates that the maximum likelihood

method provides accurate results for stable and neutral conditions, followed by the graphical method for unstable

condition. The other methods show comparatively lower accuracy. Therefore, it is strongly recommended to utilize
the maximum likelihood and graphical methods as the most effective models for calculating the yearly Weibull
distribution parameters for this site.

In summary, the accuracy of the methods for calculating the two Weibull distribution parameters varies depending

on the season and atmospheric stability conditions, as demonstrated by the results obtained in this study.
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