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Introduction 

Introduction 

Many researchers have introduced different  types of generalized countability axioms: 

g-countability axiom, b-countability axiom, D-countability axiom and finally R-countability axiom. The 

cared Siwiec in a year 1974 [1] The g-(first, second) countable space are defined by 

using weak basis in (X,τ) space, and showed their relationship with measurability. A year later, Siwiec 

[2] wrote an overview that generalized the concept of first countable space and studied the relationship 

between these generalizations.  

 In the year1991, Jian-ping [3] studied some of them Generalization of the first countability; 

Call it namely  ω_k- spaces, when he states 

The relationship between the T_1 spaces , ω- 

spaces and first countability. In 2013, Selvarani [4] advance guard the b-countable axiom on b-open 

sets, and then Elbhilil and Arwini[5] defined generalize types of countability axiom. is called pre-first 

countability, and they define these axioms in terms of sets, proving that pre-separable spaces and pre-

second countability are equivalent to separable spacesIn general topology, several distinct  

understandings of open sets have been  

explored. 

Some of these concepts, including i-open set  

(i=α,s,pre,b )  

,have been defined in a similar manner using operations involving the closure and the interior. Of 

these, the notion of preopen (or locally dense) sets is particularly significant. "Locally dense" sets were 

first identified as preopen sets by Corson and Michael in 1964 [6]. In 1982, Mashhour, and others [7] 

used the term "preopen" instead of "locally dense" set. Introduced by Csaszar [8], a set X   can have a 

generalized topology - abbreviated as GT - which is typically represented as (X,μ), in this terminology, 

the μ-open sets indicate the elements of the generalized topology. The concept of μ-countability 
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axioms, which are specific to GT, were established in 2013 by Ayawan and Canoy [9]. In their 

research, they explored the qualities of these ideas and determined the characteristics of μ-first (μ-

second ) countable space in the context of GT product. See [10,11] for details on fundamental 

properties in generalized topology. In 1963, Levine [12] took an interest in the concept of s-open sets.  

The study of general closed sets was started by C.E.Aull [13] in 1968, We consider the set of closed 

sets that belong to each superset as open. Arya and Noor introduced the concept of generalized closed 

set. [14] In 1987, Bhattacharyya and Lahiri defined and tested the concept of s-generalized closed sets 

based on the concept of s-closed sets. This class was introduced of α -generalized closed sets by Maki, 

Devi and Balachandran [15] in 1994. 

In this study we used s-open sets to define a countability axiom, it is called s-countability axioms, 

where this class consists of the axioms: s-separability, s-first countability and s-second countability. 

It is illustrate the relationship between the countable axioms and the s-countability axioms, then we 

examine the hereditary 

 properties of these spaces and their images under special functions, and the properties of these 

spaces: submaximal spaces, partitioned spaces, extreme separation spaces, solvability. 

The article is divided into seven main parts: s- 

open sets, s-dense, s-continuous functions, s- 

separability spaces,s-first countability, s- 

second countability, properties of s- 

countability, and final state. 

2.  SEMI OPEN SETS  

Definition 2.1. [16] A subset η  of space X  it's say s-open  if and only if  there exists u an open set 

such that u⊑η⊑u  . 

Theorem 2.1. [16] A subset η in X space is s-open if and only if  η⊑(η^O )  . 

The all of s-open sets and s- closed sets in  (X,τ)are  denoted by SO(X) and SC(X ), 

 respectively. 

Theorem 2.2. [12] Let  η be s-open in the space  X and suppose ⊆ξ⊆η   . Then ξ  is s- 

open. 

Definition 2.2. [16] The s-closed set is complement of a s-open set. 

 Proposition 2.1. [17] 

 X and ϕ are s-open  sets.     

Arbitrary union of s-open sets is s- 

open. 

Intersection of s-open sets need not be s-open.  

Examples 2.1.  

If  X=R  with usual topology space  and let  

A={x: 0<x<3}∪{4}  ,      B={x: 2<x<5}∪{1}   

A and B   are not s-open, but A∪B  are s-open set. 

2) Let ={a ,b,c} , τ={X ,ϕ ,{a}} is topology space then {b} is s–open but is not open  set. 

Definition 2.3. [18] The intersection of all s-closed sets of X  containing η  is called the s-closure of η  

and is denoted  by η  ^( semi) . 

Definition 2.4. [18] The union of all s-open of sets of X  contained in η  is called the s-interior of η and 

is denoted by 〖η^o〗^semi . 
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Proposition 2.2. [19] A s-open set is the intersection of an open set and a s-open set. 

Definition 2.5. [6] A subset P  of a space (X,τ) is say preopen if P⊆P  ^O  , the preclosed set is  

complement of preopen set. 

In [6] the following diagram (1) shows the relationship between the open, peropen set 

and dense set. 

open ⟹ preopen 

Dense⟹ preopen 

Diagram (1) 

Proposition 2.3.  A set η  in a space(X,τ) then  

1)  In [20]   η⊂η  ^( semi)⊂η  . 

 2) If  η is s-open [21] in X  and P is preopen in X  such  that η∩P=ϕ, then η=ϕ or P=ϕ.  

Theorem 2.3. [12]  Let  η⊆Y⊆X where X  is a space and Y is a subspace. Let η∈SO (X). Then η∈SO (Y). 

Definition 2.6. [22]   A set is regular open if and only if it is preopen and s-closed. 

Theorem 2.4. [22] For a subset η of (X,τ) the following sentences are equivalent: 

1) η is preopen. 

2) The s-closure of  η is a regular open set. 

Definition 2.7. [23] A subset η  of a space X  it is said to be s-regular if a subset η  is s-open and s-

closed . 

The set of all s-regular sets of X  is  denoted by SR (X). 

The following diagram (2) shows the relationship between the regular sets and s-open sets. 

regular sets ⟹s-regular sets ⟹ s-open sets 

Diagram (2) 

Proposition 2.4. [24] If    (X,τ)   is topological 

space, and η⊂P⊂X , where P  is preopen. Then η  is s-open  (s-closed) in P  if and only if 

η=S∩P , for some s-open (s-closed) set S. 

Proposition 2.5. [25]   Let η  be a subset of a   space X. Then: 

η  ^semi  =η∪ η  ^O. 

  2)  (X-η)  ^semi=X- 〖η^O〗^semi.                                                  

3)  〖〖(X-η)〗^O〗^semi=X- η  ^semi.                                               

Definition 2.8.  [26]   A subset B of a space X  is say  b-open  if  B⊆(B^O )    ∪B  ^O.                                      

Theorem 2.5.  if (Y,τ_Y)   be a subspace of a       

space (X,τ)   and let η⊆Y. If η is s–open in X  , then  η is s -open in Y. 

Proof.  Let η  is s-open in  , there exists an open set u  in  X such that u⊆η⊆u   . Then u^Y=u∩Y ⊆η⊆u    

∩Y=u  ^Y Thus η  is s-open in Y. 

Definition 2.9.  [27] A subset w of a space X is Called a weak open, if there is an open set  u   such 

that w  =u  . 

Remark 2.1. 1) IN [27] All s-open sets are weakly open set. 

A [6] set is an open if and only if it is s-open )and preopen.  

The following diagram (3) shows the relationship between the open sets and  i-open  sets  (i=α ,pre ,s 

,b) 

Open set ⟹  α-open set  ⟹ ■(⟹s-open set @⟹pre open set )  ⟹ b- open set 

Diagram (3) 
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Proposition 2.6.  [6] If  η is s-open in space X and P  is preopen in space X, then η∩P  is 

s-open in P and preopen in η. 

3. S-DENSE SET.   

Definition 3.1. [28]  let D a subset of  X a space is said to be dense if D  =X. 

Definition 3.2. [29] A subset B of X is called  b-dense if B  ^b=X. 

Definition 3.3.  [30] let D a subset of X a space is said s-dense if  D  ^semi=X . 

Proposition 3.1. [20] Every non-empty preopen subset of X space is s-dense. 

Corollary 3.1. let  (X,τ)  topology space then: 

1) Any s-dense set is dense. 

2) Any b -dense set is s-dense. 

Proof. 1) if  D be a s-dense subset of a space X, i.e.  D  ^semi=X  , since D  ^semi⊆D    then  D  =X . 

2)if B be a  b-dense subset  , i.e. B  ^b=X , since  B  ^b⊆B  ^semi such as B  ^semi=X.   

The following diagram (4) shows the   relationship between the  b–Dense  and   s-open sets. 

b-Dense ⟹ s-Dense ⟹Dense⟹ preopen⟹  

s-open 

Diagram (4) 

Corollary 3.2. If A subset of (X,τ) is s-dense if and only if any non-empty s-open set in   contains points 

from A. 

Proof.  ⟹ If  A  be a s-dense subset in  , and if Bbe a non-empty s-open set. Since B≠ϕ and  there is  A 

 ^semi=X there is x∈B and x∈A  ^semi,we get A∩B=ϕ. 

⟸ If  x be any element in X ,then any s-open set that contains x intersect A , i.e. x∈A  ^semi  we get A 

 ^semi=X. 

Corollary 3.3. Let  (X,τ) topology space then: 

1)Every subset of X space that contains a s- dense set is s -dense.  

2) If  A is s-dense set in B,and B  is s-dense in X, then A is s-dense in X.  

Proof. 1) verified  A  ^semi⊆B  ^semifor every sets  A and B satisfy A⊆B. 

2) Let N is s-open set in X,then  A∩B≠ϕ since B is s-dense in X ,by corollary (3.2) we have N∩B is s-

open set in B. Since A is s-dense in  , then we have (N∩A)∩B≠ϕ,i.e. (N∩B)∩A=N∩A≠ϕ,Therefore, A is s-

dense in X. 

Theorem 3.1. [31] A set  η⊆X is nowhere s-dense if and only if 〖(η  ^semi)〗^O=ϕ. 

Theorem 3.2. [30] Let (X,τ) be a space and D⊂X.Then D is dense in X if and only if    D∩η≠ϕ. 

For any non-empty η∈SO(X) 

Proposition 3.3. [30] Let (X,τ) be a space and ∈SO(X) , U∈τ and U∩η≠ϕ . Then for dense set  , U∩η∩D≠ϕ 

. 

Remark 3.1.[30]  If D is dense in the space (X,τ) and U is open in (X,τ) then ((D∩U))   

is a s-open set. 

Theorem 3.3. The union of finite number of non- s-dense set is non s-dense sets. 

Proof. Let  A,B are  non-s–dense sets, we put  W=(〖〖(A∪B)    〗^semi)〗^o so that 

W∩(〖〖B    〗^semi)〗^C⊆(〖A    〗^semi∪〖B    〗^semi)∩(〖〖B    〗^semi)〗^C 

that is  W∩(〖〖B    〗^semi)〗^C⊆(〖A    〗^semi∪〖B    〗^semi)∩(〖〖B    〗^semi)〗^C  
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〖A    〗^semi∩ (〖〖B    〗^semi)〗^C ⊆ 〖A    〗^semi. Since 〖B    〗^semi∩(〖〖B    

〗^semi)〗^C=ϕ.then   〖〖(W∩(〖〖B    〗^semi)〗^C)〗^O〗^semi⊆  (〖〖B    〗^semi)〗^C⊆〖(scl 

(A))^O〗^semi=ϕ ⊆〖∅^O〗^semi. Since A  is non s-dense. But 

  (〖〖W∩ (〖〖B    〗^semi)〗^C )〗^O〗^semi=W∩ (〖〖B    〗^semi)〗^C. 

Since W∩(〖〖B    〗^semi)〗^C is  s–open set, it follows that  W∩(〖〖B    〗^semi)〗^C=ϕ, which 

implies 

 W⊆ 〖B    〗^semi then 〖w^o  〗^semi⊆ 〖(〖B    〗^semi )^o〗^semi=ϕ,  Since B is non s–dense. But    

〖w^o  〗^semi= 〖〖〖〖〖(A∪B)    〗^semi〗^o〗^(semi )〗^o〗^semi=〖〖〖(A∪B)    

〗^semi〗^o〗^semi. So that 

  〖〖〖(A∪B)    〗^semi〗^o〗^semi=ϕ .Hense A∪B is non s- dense. 

Theorem 3.4.   If A  be a subset of(X,τ) spaces  

then  A is non s– dense in X  if and only if  

 X-〖A    〗^semi  is s- dense in X. 

〖A^o  〗^semi=X-〖(X-A)    〗^semi 

Proof.  by Proposition 2.6. it follows that  〖A    〗^semi=X-〖(X-A)^o  〗^semi and 

〖〖〖A    〗^semi〗^o〗^semi=X-(X-〖A    〗^semi )  ^( semi ) 

Sinse A is non s–dense then  〖〖〖A    〗^semi〗^o〗^semi=ϕ. 

then X-(X-〖A    〗^semi )  ^( semi )=ϕ, we get  (X-〖A    〗^semi )  ^( semi)=X,then (X-〖A    〗^semi )  ^( 

semi )is s–dense. 

4.S-CONTINUOUS FUNCTION. 

Definition 4.1.  [12] let  F:(X,τ)→(Y,σ)   function is called s-continuous if is F^(-1) (V) a s-open set of 

(X,τ)  for any open set V  of (Y,σ) . 

Corollary 4.1. Any continuous function is s– continuous function. 

Theorem 4.1. [12]  Let  F:(X,τ)→(X,σ)  be the s-continuous function. Then for any dense 

 subset  D of (X,τ) ,  D∩F^(-1) (O)≠ϕ, for anyO∈σ. 

Definition 4.2. [33] A function F:X→Y  is said to be: 

1)irresolute if the inverse image of every s-open set in Y is s-open in X. 

2)pre-s-open if the image of every s-open set in X is s-open in Y. 

Definition 4.3. [33] if  F:X→Y   function is said to be s-homeomorphism if  F is irresolute  

and pre-s-open. 

Theorem 4.2. [33] If   F:X→Y then: 

1)An open and continuous then F is irresolute and pre s-open. 

2) a homeomorphism then Fis also a s- homeomorphism.        

Theorem 4.3. [34]  Let A is s–open set in X space, if F:X→Y  be a continuous open mapping where X 

and Y are spaces . then  F(A) is s-open set in Y. 

5. APPLECATION OF SEMI-OPEN SET 

5.1.In Partition Spaces. 

Definition 5.1.1. [28] A (X,τ) be a space is say partition space if any open subset of X is 

closed. 

Proposition 5.1.1. In partition space (X,τ)  , any subset of  X is s-open, i.e SO(X,τ)=P(X). 

Proof. Suppose A  is a subset of X ,then A⊆A   , every closed set in partition space is also 
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open, then A     is open set, i.e. (A^O )  =A   , so  A⊆(A^O )   , then A is s-open set. 

Corollary 5.1.1 In Partition space X  is s-separable space if and only if the space X  is countable space. 

Proof. clear that  {{x}} is a countable s-local base at every point x in X . 

Definition 5.1.2. [39] A topological space (X,τ) is say s-partition if any s-open subset of X 

is s-closed. 

5.2.In Submaximal Spaces. 

Definition 5.2.1. [35] Let  (X,τ) is Say submaximal space if each  dense set in X 

is open. 

Theorem 5.2.1. [36] If (X,τ) is submaximal and  A∈SO(X) then 〖(A,τ〗_A) is submaximal. 

Corollary 5.2.1. In (X,τ)  is submaximal, any s-open set is open, i.e. SO(X,τ)=τ. 

Proof. If  A be a s-open subset in a space  , then from proposition (2.4) (1)  A is preopen set  in  X in [5]  

we get A is open set. 

Corollary 5.2.2. In a submaximal space X, if D is dense if and only if D is s-dense in X. 

Definition 5.2.2. A space  (X,τ) is called s-submaximal if any s-dense subset of  X is s-open. 

Definition 5.2.3. [37] A subset η of a space (X,τ)is say s-preopen if  η⊆((η )  ^o )  , s-preclosed set is  the 

complement of s-preopen set .The family of all s-preopen sets and s-preclosed sets in X are denoted by 

SO(X) and SC(X),respectively. 

Theorem 5.2.2. If   (X,τ)  be a space, then the following properties are holds: 

(X,τ) is s-submaximal; 

2)any s-preopen set is s-open. 

Proof. 1) ⟹ 2): if   N ⊆ X be a s-preopen set. Then ⊆(N^O )  ^O , let  (N^O )  ^O=M, say. 

This implies (M )  ^semi=(N )  ^(semi ) and hence  (((X-M)∪N) )  ^(semi )=((X-M ) )  ^semi∪(N )  ^semi=((X-M ) 

)  ^semi∪(M )  ^semi=X   and thus  (X-M)∪ N is s-dense in  . 

N=((X-M)∪ N)∩M is s-open. 

 Now  

(X-M)∪ N                                                                              

and N is the intersection of two s-open sets and hence N is s-open. 

⟹(1 : Let  M be a s-dense subset of X. 

Then 〖(M )  ^semi〗^o=X, then  M⊆〖(M )  ^semi〗^O and  M is s-preopen,M is s-open. 

5.3.In extremely disconnected  

Definition 5.3.1. [43] A space (X ,τ) is called extremelly discometed if the closure of evrey coopen set is 

open. 

Theorem 5.3.1. [20] In a topological (X,τ) the following nditions are equivalent: 

X is extremally disconnected. 

2)Any regular closed subset of X is preopen. 

3)Any s-open subset of  X is preopen. 

Corollary 5.3.1. [21] A topological  (X,τ) is said to be extremally disconnected if and only if for any s-

open set A⊆X and every s-preopen set ⊆X , then set  A∩B is s-open. 

Definition 5.3.2. A space (X,τ) is called extremally s-disconnected if the s–closure of 

any s-open subset of  X is s-preopen. 

Definition 5.3.3. Let subset  N of a space (X,τ) is said to be regular s-open if  N=(〖〖N 

 ^semi)〗^o〗^semi. 
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The complement of a regular s-open set is called regular s-closed. 

Proposition 5.3.1. Let (X,τ)be a topological space and N⊆X.If  N is a regular s-open set, then it is s-

open. 

Proof. Clearly. 

Theorem 5.3.2. Let  (X,τ) be a space, then the following are equivalent: 

1)(X,τ)  is extremally s-disconnected;    

2)Any regular s-open set is s-clopen. 

Proof.  1) ⟹2): Let (X,τ) is  extremally s-disconnected and Let  N be a regular  s-open set, then  

N=(〖〖N  ^semi)〗^o〗^semi=N  ^semi Hence N  is s-closed ,we have N  is s-clopen. 

⟹2) : Let N∈SO(X) . Then (N^O )  is a regular s-closed set  which is s-clopen. Hence is (N^O )   s-open. 

5.4.On Resolvability 

Definition 5.4.1. [40] A space (X ,τ) is said to be resolvable if  there is dense subset  D-X   for which   X-

D is also dense. A space which is not resolvable is called irresolvable. Corollary 5.4.1. [40] Every 

subset of  X is resolvable (irresolvable)if it is resolvable (irresolvable) as a subspace. 

Corollary 5.4.2. [41] Any submaximal space is irresolvable and in fact hereditarily  

 irresolvable. 

Theorem 5.4.1. [41] Any s-open subset of a resolvable space is resolvable. 

6.S-SEPARABILITY. 

Definition 6.1. [29] A topological  (X ,τ) is said to be separability if it has a countable dense subset in X. 

Theorem 6.1. [29] 

1)Every open subspace of a separability is separability. 

2) The continuous image of a separability space is separability. 

Definition 6.2. [30] A space X is said to be b-separability space if it has a countable  b-dense subset of 

X. 

Definition 6.3.  A space  X is say s-separability if it has a countable s-dense subset of  X. 

Corollary 6.1.  1) Any s-separability is separability. 

2)Any b-separability space is s-separability.                         

Theorem 6.2. Every s–open subspace of s-separability is s-separability. 

Proof.  Let Y is a s-open subspace of  s-separability X , then X has a countable  s-dense subset η , 

since Y is a s-open subspace, then Y∩η  is s-dense and countable subset in Y ,hence Y is s-

separability. 

Remark 6.1. An open subspace of s-separability is s-separability.  

Proof. Direct since any open set is s-open. Theorem 6.3. A s-irresolute image of s-separability is s-

separability.  

Proof. Let  F:X→Y be a s-irresolute  function from a s-separable. 

Be a s-irresolute function from a s-separability space  , then X has a countable s-dense subset η , so 

F(η) is countable. Now suppose  N is a s-open set in  F(X) since Fis s-irresolute   is a non-empty s-open 

set in X, so  F^(-1) (N)∩η≠∅ ,hence N∩F(η)≠∅. We have  F(η)   F^(-1) (N)              is a countable s-dense 

subset of F(X). 

7.S-FIRST COUNTABILITY  

Definition 7.1. [28] A space X has a  

countable basis at x if there is a countable collection B_x of neighborhoods contains x  is 

say basis at X if for each neighborhood U such that x∈U there exists B_x in B_x such that 
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 x∈B_x⊆U.  

Definition 7.2. [28] A  topological space X having a countable basis at each of its points is said to first 

countability if for any x∈X there is a countable local base  B_x at X.   

Theorem 7.1. [28] 1) Every subspace of first   countability is first countability. 

2) The continuous image of a first countability and open map is first countability. 

Definition 7.3. In a space X, a collection  N_x of s-open sets that contains an element  x is called s-

local basis at X if for any s-open set B such that x∈B there is N_xin N_x such that   

x∈N_x⊆B.                                                                              

Definition 7.4. A topological space X is called s-first countability if for any  x∈X there is a countable s-

local base at X. 

Theorem 7.2. A s-open subspace of s-first countability is s-first countability. 

Proof. Let  Y be a s-open subspace of a s-first countability X, then any  y∈Y (⊆X) has a countable s-

local base  ℵ_y for X. 

Let  M is a s-open set in Y that contains y, then form theorem (2.6)then M is s-open in  X , since  ℵ_y is 

a s-local base at y , there exists a s-open set  〖N_y∈ℵ〗_y such that y∈N_y⊆M , then 

y∈N_y∩Y⊆M∩Y=Mtherefore N_y∩Y is a countable s-local base at y in the subspace Y. 

Theorem 7.3. Image of s-first countability under s-irresolute and  M-s-open map is s-first countabililty.  

Proof. Suppose  F: X⟶ Y is a s-irresolute, M-s-open map from a s-first countabilily X onto a space Y. 

Then for any  y∈F(X) there is a countable s-local base ℵ_(F^(-1) (y))  at F^(-1) (y) for  , since F is  M-s-

open map the collection  F(ℵ_(F^(-1) (y) )) is countable collection of s-open sets in F(X) , and  since  F is 

s-irresolute, then  F(ℵ_(F^(-1) (y) )) is a countable s-local base at y . 

8. S-SECOND COUNTABILITY 

Definition 8.1. [29] A space X has a countable basis if there is a countable collection B  of subsets of X 

that is a basis for on X space. In this case X is said to  satisfy the second countability axiom, or to be 

second-countable. 

Theorem 8.1. [29] 

 (1Second-countability implies first countability.    

2) Every subspace of a second-countability is second-countability. 

3) The continuous image of a second countability and open map is second  

countability. 

Definition 8.2. The collection ℵ of s-open sets in a space (X,τ) is say s-base for  if each s-open set can 

expressed as a union of members of ℵ  . 

Examples 8.1. 

1)Let  X=R with  τ={R,Q,K,∅} the collection {Q ,K }  is base for  R but not s-base, while the collection  is 

{{x}}_(x∈R)s-base for R  but not base.  

2)Let  τ={R,∅}  on  R the collection {{x}}_(x∈R) is s-base but not base. 

Definition 8.3. A space (X ,τ)  is say s- second countability if X  has a countable s-base. 

Examples 8.2. 

 (1Let X=R with τ={R,Q,K,∅} is second countability but not s-second countability.  

 (2The trivial space on uncountable is second countable space but not s-second countability. 

 (3The space  X=R with τ={R,Q,∅} is s-second countability, since { R }∪ {{x}}_(x∈Q) is a s-local base for R.   

Definition 8.4. Let  (X ,τ)  be a space is say  s-countabiity if the collection SO(X ,τ)  is 

countability. 
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Corollary 8.1. Any s-countability is s-second countability. 

Proof. Direct since  SO(X ,τ) is a countability s-local base for X. 

Remark 8.1. Any s-countable space is s-first countability space and s-separability. 

Examples 8.3. 

 (1Let X=R with τ={ϕ}∪{A⊆R:1∈A } is s-separability(since {1} is countable s-dense set in  R), but X is not 

s-second countability since {1,x} is s-open set for any x ∈R, x≠1.  

 (2If X=R and τ={ϕ,R ,{1}} then X is s-first countability (since {{1,x}} is a countable s-local base at any 

point x∈R), but not s-second countability. Note that, the space  X is countable but not s-second 

countability. 

Theorem 8.2. Any s-open subspace of s-second countability is second countability.           

Proof. If  Y be a s-open subspace of a s-second countability of X, then X has a countable s-base ℵ. Now 

we need to prove that the collection ℵ_Y={N∩Y:N∈ℵ} is a countable s-base for Y    Let M is a s-open set 

in Y , then form theorem (2.3) we get  M is s-open in X, since ℵ is a s-base for X, there exist s-open sets 

N_α∈ℵ such that M=∪N_α , then M=M∩Y=∪(N_α∩Y) , therefore {N_α∩Y} is a countable s-base for the 

subspace Y. 

Theorem 8.3. The s-irresolute image of s-second countability and  M–s-open map is 

s-second countability. 

Proof. Let  F:X→Y is a s-irresolute and  M-s-open map from a s-second countability  X onto space Y . 

Then X  has a countable s-base ℵ , since the map F  is  M- s-open  map the collection  F(ℵ) is a 

countable collection of  s-open sets in F(X) , and since F  is s-irresolute, then F(ℵ) is a countable s-local 

base for F(X). 

Example 8.4. Let X=Y=R with τ_1={R,Q,ϕ} then SO(X,τ_1 )=P(Q)∪R,and τ_2={R,Q,ϕ}  , 

then SO(X,τ_2 )=P(R). Then the identity map from (R,τ_1)onto the space (R,τ_2 ) is  M-s-open map, 

however the space (R,τ_1) is s-second countability while  (R,τ_2 ) is not s-second countability. 

Conclusion 

We introduce the notion of dense countability axioms; namely semi-countability axioms. We study the 

basic properties of s-countability axioms, as their subspaces and their continuous images. In addition, 

we discuss the relations between s-countability axioms and countability axioms, and we prove that the 

axioms of separability, s-separability and s-second countability are equivalent. 

   Outline some of our results: 

s-dense set is dense. 

In submaximal space, any s- open set is open set. 

In partition space, any subset is s-open. 

s-separability is separability, but not conversely. 

b-separability is s-separability space, but not conversely. 

A s-open subspace of s-first countability is s–first. countability. 

s-countability space is s-first countability and s-separable space. 

s-Second Countabililty is s-First Countability.                     

      •    s-open subspace of s-second 

            countability is second countability. 

  

 

 



 

113 
 

References 

 [1] Frank Siwiec, On Defining a Space By A Weak Base. Pacific Journal of Mathematics, 52 (1) (1974) 

233-245  

[2] Frank Siwiec, Generalization of The First Axiom Of  Countability. Tocky Mountain Journal of 

Mathematics, 5 (1) (1975)  

 [3] Zhu Jian-Ping, The Generalizations of First Countable Spaces. Tsukuba J. Math., 15 (1) (1991) 

167-173  

[4] Ponnnuthai Selvarani. S, Generalization of Urysohn's Lemma and Tietze Extension Theorem in b-

Finitely Additive Space. International Journal of Computer Application, 3 (2) (2013) 1-19. 

  [5]    Nagah A. Elbhilil , Khadiga A. Arwini,(2021),Countability Axioms Via Preopen Sets. An 

International Scientific journal, 111-125.  

[6]     H. H. Corson, E.Michael,(1964), Metrizability Of Certain Countable Unions. IIIinois J. Math.,8 

(2), 351-360.  

[7] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On Precontinuous and Week 

Precontinuous Mappings. Proceedings of Mathematical and Physical Society of Egypt, 53 (1982) 47-53  

 [8] A. Csaszar, Generalized Topology, Generalized Continuity. Acta Math Hungar, 96 (2002) 351-357  

[9] John Benedict T. Ayawan and Sergio R. Canoy, Jr., Axioms Of Countability In Generalized 

Topological Spaces. International Mathematical Forum, 8 (31) (2013) 1523-1530  

[10] S. Ersoy, I. Ince and M. Bilgin, Strongly 𝑘 -Spaces. Bulletin of The Iranian Mathematical Society, 

43 (3) (2017) 727-734  

[11] R. Khayyeri, R. Mohamadian, On Base for Generalized Topological Space. Int. J. Contemp. Math. 

Sciences, 48 (2011) 2377-2383  

[12]     N. Levine., (Jan., 1963), Semi-Open Sets and Semi-Continuity in Topological Space, The 

American Mathematical Monthly , Vol. 70, No.1, pp. 36-41.  

[ 13] C.E. Aull, Paracompact and countably paracompact subsets, General Topology and its relation to 

modern Analysis and Algebra,  Proc. Kanpur Topological Con., (1968),                               49-53.   

 [14] S.P. Arya and T. Nour, Characterizations of   s-normal spaces, Indian J. Pure Appl. Math.,  21 

(1990), 717-719. 

[15] H.Maki ,R.Devi and K.Balachandran, 

Associated topologies of generalized 

  − closed sets and   − generalized closed 

sets , Mem.Fac. Sci.Kochi  Univ.Ser.A.Math.,15(1994), 51-63. 

 [16]      S. G. Crossley, S. K., (1971), Hildebrand, Semi-closure, Texas J. Sci., 22, 99-112 

[17]  Al-Khazraji, R.B., (2004), On Semi-p-Open Sets, M.Sc. Thesis, University of Baghdad. 

[18]     T. Noiri, (2003), Remarks On δ -Semi-Open Sets And δ –Preopen Sets, Demonstration 

Mathematica, Vol. XXXVI No 4.  

[19]    O. Njastad, (1965), On Some Classes Of Nearly Open Sets, Pacic J. Math. 15, 961-970.  

 [20]    S.N. Maheshwari, R. Prasad, (1975),Some New Separation Axioms, Annals de laSociete 

Scientfique de Bruxelles,T.89.III, 395-402. 

 [21]    J. Dontchev,(1998)Survey On Preopen Sets. The Proceedings Of The Yatsushiro Topological 

Conference,  1-118. 

[22]     T. Noiri,(1984), Hyperconnectedness And Preopen Sets, Rev. Roumaine Math. Pures Appl., 29 

(4), 329–334. 



 

114 
 

[23]    G. Di Maio, T. Noiri,(1987), On s-closed spaces, Indian J. Pure Appl. Math. 18 (1987), 226-233 

 [24]    M. S. Sarsak, (2009),On Semi Compact Sets And Associated Properties, Int. J. Math. Math. Sci., 

465387. DOI: https://doi.org/10.1155/2009/465387. 

 [25]    El-Maghrabi , Nasef ,(2009) , Between Semi‐Closed And GS‐Closed Sets , Available online at 

www.jtusci.info ISSN: 1658-3655, 2: 78-87. 

[26]      D. Andrijevi c, (1996), On b-Open Sets, Mat. Vesnik 48, 59-64. 

 [27]   U.V.Fatteh , D. Singh,(1983), A note on D-Spaces, Bull, Cal, Math, Soc,75, 353- 358. 

 [28]     J. N. Sharma and A.R. Vasishtha ,(1976), Functional Analysis", meerut. 

[29]    S. Willard, General Topology.  Addison-Wesley Publishing Company, United States of American 

(1970). 

[30]    Ponnnuthai Selvarani. S,(2013), Generalization Of Urysohn's Lemma and Tietze Extension 

Theorem in b-Finitely Additive Space. International Journal of Computer Application, 3 (2) 1-19.  

[31]   Shyamapada Modak ,(2011) , Remarks On Dense Set , International Mathematical Forum,Vol. 6, 

no. 44, 2153 – 2158 . 

[32]    T.M. NOUR ,(1998), A Note On Some Applications Of Semi-Open Sets, Internat. J. Math. & 

Math. Sci. , VOL. 21 NO. 205-207 . 

 [33]   S. G. Crossley, S. K. Hildebrand, (1972), Semi-topological properties, Fund. Math. 74, 233-254. 

[34]   Thomas , Semi – open sets  ,Thesis , ,August 1965 .  

[35]     N. Bourbaki,(1996), General Topology. Addison Wesley, Part 1, Reading, Massachusetts.  

[36]    D. A. Rose, R. A.Mabmoud,(1994) , On Spaces Via  Dense Sets And Smpc Functions , 

Kyungpook Mathematical Journal, Vol.34, No.l, 109- 116. 

[37]   D. Andrijevic, (1986), Semi-Preopen Sets, Mat. Vesnik 38, 24-32. 

 


