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Abstract: The need for mobile communications is continually expanding, which drives up the demand 

for greater coverage, more capacity, and enhanced transmission quality. As a result, the radio 

spectrum needs to be used more effectively. The sort of antenna array that is adaptive Smart antenna 

systems hold out hope for a viable remedy to the issues with current wireless systems while attaining 

dependable and robust high-speed high-data-rate transmission. Smart antenna systems are capable of 

effectively exploiting the radio spectrum. Radars may effectively employ direction of arrival estimation 

(DOA) algorithms and interference cancellation to rebuild the original received signals and aid in the 

position determination of those signals. military surveillance, sonars, seismic exploration, and 

communications systems. Wideband signals are more challenging since they require more data and 

computer power to solve the same problem. Both fixed diagonal loading and diagonal loading based on 

Eigenvalues employ fixed diagonal loading factors that are independent of direction inaccuracy. The 

approaches, known as FDL and EDL, estimate the loading factor by adequately adapting already-

presented narrowband beamforming techniques, and they demand perfect knowledge of the steering 

vector error, just like narrowband techniques do. 

Wideband DOA estimation techniques like Incoherent Subspace Processing (ISSM) and Coherent 

Signal Subspace Processing (CSSM) with Eigen-value Based Diagonal Loading Technique are 

presented in this study to improve wideband DOA accuracy. A uniform linear array antenna was used 

to test the mathematical adjustment for various correlated and uncorrelated wideband signals entering 

at various incoming angles. with knowledge of or an estimate of the incoming signal direction. This 

document will be processed entirely on a computer using MATLAB.  
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____________________________________________________________________________________________________ 

Introduction 

The development of adaptive antenna arrays is based on digital signal processing techniques. In order 

to improve reception in the direction of signals that are of interest while reducing interference in the 

direction of signals that are of no interest, the adaptive antenna array system gains the ability to find 

and track signals from both users and interference sources. The performance of an adaptive antenna 
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array system is significantly influenced by the efficiency of digital signal processing techniques. Several 

DOA estimation approaches are used in adaptive antenna arrays to locate the target signal. The 

number of plane wave occurrences and their angles on the antenna array are calculated using the 

DOA algorithms [1].  

Wideband sources can also be located using array processing techniques. As was previously indicated, 

compared to the center frequency, the frequency bandwidth for wideband transmissions is rather big. 

Compared to narrowband signals, which had an indefinite length and just one frequency, wideband 

signals had a bounded duration. These presumptions can be loosened to accommodate signals with 

narrow bandwidths compared to carrier frequencies and lengthy durations compared to array sizes. 

Wideband signals are more challenging since they require more data and computer power to solve the 

same problem. While the phase delays of the narrowband signals may be used to estimate the time 

delays, wideband signals require further signal processing before the detection and estimation issues 

can be resolved using the current techniques. 

1. Wideband Processing Beamformer 

Based on time-domain processing and frequency-domain processing, there are two primary methods 

for wideband beamforming [2]. These methods can create beam patterns that are frequency-invariant 

over a wide range of signal bandwidths. However, for signals with large bandwidths, the frequency-

domain approach offers computational benefit compared to the time-domain method [2]. Figure (1) 

depicts the structural layout of a beamformer for frequency-domain processing. The fast Fourier 

transform (FFT) is used in this beamformer to convert wideband signals from each element into 

frequency domain, and a narrowband processor processes each frequency bin. the time-domain 

technique has a computational benefit [2]. 

Figure (1) depicts a beamformer's structural layout for frequency-domain processing. In this 

beamformer, the fast Fourier transform (FFT) is used to convert wideband signals from each element 

into frequency domain, and a narrowband processor processes each frequency bin. Additionally, the 

frequency-domain beamformer's employment results in inexpensive hardware costs because it does 

not call for a high A/D conversion sample rate. In contrast to the frequency-domain approach, which 

only needs a sampling rate equal to the Nyquist frequency, the time domain method often requires five 

to ten times the Nyquist rate in order to provide accurate beamforming. When a large number of 

antenna components are employed particularly in high-frequency bands, the cost associated with high 

sampling rates will be more noticeable. However, the data storage needs and computing effort (for 

example, for FFT, inverse FFT) are higher for frequency-domain beamformers. 

 

 

Fig. (1). Frequency-Domain Processing Beamformer. 

 

The FFT is used in the FDFIB to convert wideband time-domain signals to frequency domain, and each 

frequency bin is subsequently weighted by a suitably set complex factor. A FDFIB's structure is seen 
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in Figure (1). Any antenna array can be used in conjunction with the FDFIB. Additionally, the beam 

pattern's frequency-invariant property is only dependent on the phases of the beamforming weights. 

Since the amplitudes of the beamforming weights may be changed, the FDFIB has an advantage in 

manipulating beam shape. 

2. Incoherent Frequency Combining Methods 

These techniques are wideband adaptive DOAs. The typical method for processing wideband signals 

involves taking a spectrum sample of the incoming signals from each sensor to create an array of 

narrowband signals. The narrowband signals at each frequency are treated independently in the so-

called incoherent signal-subspace processing approach, and the outcomes from all frequency bins are 

then merged to provide the final result. However, when the sources are coupled and the SNR is low, 

the performance of this technique suffers. The subspace fitting methods, specifically MUSIC [3], are 

among the techniques for incoherent wideband DOA estimation that are now accessible. 

3.1 Wideband MUSIC Beamformer 

The observation space is often divided into signal and noise subspaces using subspace decomposition 

techniques. Through the decomposition of the array correlation matrix into its Eigen-structure form, 

the signal and noise subspaces are estimated in the first stage of these methods. The phrase "signal 

subspace" refers to the region of space that is covered by the covariance matrix eigenvectors that 

correspond to the dominating eigenvalues. The fact that signals' Eigen-values are greater than those of 

noise is used by the detection techniques. The approach for calculating the specific frequencies of 

many time-harmonic signals, known as MUSIC (Multiple Signal Classification) [3], is one of the most 

widely used techniques. By performing the Fourier transform of the aforementioned equation, one may 

derive the vector X(t)'s representation in the frequency domain. 

)()(),(),(  NSAX 
                 (1) 

Where, 
 TMXXXX ),(),.......,(),,(),( 21  

 is the M vector of array output. 

 TdSSSS )(),.......(),(),( 21  
 Is the d vector of source signals. 

 TMNNNN )(),.......(),()( 21    is the N vector of noise. 

The array steering vector takes into account the far-field and assumes that the arrays are similar. 

A(ω,θ) can be written as 
 ),(.........),........,(),( 1 DaaA  

. 

 

 

Fig. (2). Basic Principle of Incoherent Method. 

 

 

Fig. (3). Block Diagram of the Incoherent Wideband Adaptive Beamformer. 
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The output covariance matrix is used in all traditional beamforming methods to identify the source's 

direction of arrival. The output power at each of the sensors can be seen using the covariance matrix, 

and the matrix may simply be changed to achieve improvements at all of the sensors. [3] provides the 

symmetric covariance matrix of X in Eq. 2. 

  H
M

n

H

XX XX
M

XXER ),(),(
1

.),(
1

 




    (2) 

Where, E[ּ ] is the expectation operator and 
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The Eq. 3.11 is further calculated as Hence the Covariance matrix is given by. 

IARAR H

ssXX

2),(),(),(  
        (4) 

Where I is the M x M identity matrix. σ2 is the noise variance in each channel if the noise is 

white, I2 is the MxM covariance matrix of the noises. ssR
is the d x d Auto-covariance matrix of input 

signal. For MUSIC to be applicable the input signals are assumed to be uncorrelated, so the covariance 

matrix ssR
will be a diagonal matrix having full rank d [4]. 

 dss PPdiagR ,.....1
                                    (5) 

Where 
 2

)(dd SdEP 
 is the spectral power density of the

thd signal. ssR
will be positive-definite if 

and only if the d signal vectors are linearly independent. Under these assumptions, 

H

ss ),.A().R,A( 
 is a positive semi definite M x M matrix of rank d with 

  Maaspan D  )(),........()),.A().R,(A(rank 1

H

ss 
Let M  ......21 denote the Eigen-values of 

xxR
and M  ......21 denote the Eigen-values of matrix 

H

ss ),.A().R,A( 
respectively. From Eq. (5) we 

can easily see the following relation. 
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Since the rank of SSR
 is d and the number of sources d is smaller than the number of arrays M, the 

matrix 
H

ss ),.A().R,A( 
is singular, i.e. 

0),.A().R,A( H

ss 
                              (6) 

Eq. 3.15 implies that the d columns of 
H

ss ),.A().R,A( 
span a D-dimensional subspace of M-

dimensional complex space. This subspace is referred as Signal Subspace. The smallest (M-d) Eigen-

values of 
H

ss ),.A().R,A( 
are zero [4], i.e. 

0...........1  MD 
                               (7) 

Finding the D distinct elements of A(ω ,θ) that cross the subspace will yield the DOA for the no-noise. 

But if we take into account the matrix's inclusion of a noise component 
H

ss ),.A().R,A( 
 Given that 
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the eigenvectors of the MxM matrix XXxR
are all linearly independent, the Eigen-value decomposition 

(EVD) can be carried out as follows: 
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Because is a Hermitian matrix XXR of full rank, each of the matrix's eigenvectors ie
 is mutually 

orthogonal to one another, i.e. 
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Because i  denotes the Eigen-value and ie
 denotes the eigenvector of matrix xxR

, the implies  

MDieeR iixx ,......12 
                (10) 

or 

MDieIR ixx ,......10)( 2 
     (11) 

Hence Eq (6) can be rewritten as. 
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Since covariance matrix XXR
 is real, positive, full rank diagonal matrix, it follows that  

MDiei ,......10),.A( H 
          (13) 

According to the equation above, the steering vector's  ),(.........),........,( 1 Daa  subspace is the 

orthogonal complement of the subspace spanned by the eigenvectors. 
 MDD eee ,......,, 21   This is shown 

as The eigenvectors of the covariance matrix, as was previously noted, are orthogonal to each other, so 

SE
and RE  are orthogonal complement. This can be expressed 

as    ),(.........),........,(,......,, 121 DMDD aaspaneeespan  As mentioned above that the eigenvectors of the 

covariance matrix XXR
 are orthogonal to each other, so SE

and RE  are orthogonal complement. This 

can be expressed as 
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T
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As a result, we can observe that the columns of SE
span the M-dimensional complex space's d-

dimensional signal subspace similarly to the column vectors of matrix A(ω ,θ) ,that is. 

   ),(.........),........,(,......,, 121 D

T

D aaspaneeespan   the subspace covered by the d greatest eigenvalues of 

xxR
 the D eigenvectors, has the name "signal subspace." The subspace covered by the M-d 

eigenvectors of xxR
 the M-D lowest Eigen-values is known as the noise space. The orthogonal 

complement of the signal subspace and the noise subspace is one another. Finding steering vectors on 

the array manifold that have zero paperion in the noise subspace allows one to identify the direction of 
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arrival. These steering vectors must be orthogonal to the noise subspace. The real direction of arrival is 

the direction that the best steering vector steers in. The DOAs are calculated by the MUSIC algorithm 

as the peaks of the MUSIC spectrum as [4]. 
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The second stage is transforming a real Time domain signal to a complex Frequency domain since the 

approach acts in the Frequency domain. This is accomplished for each data block using FFT. 
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All beam-patterns or pseudo spectrum are incoherently averaged in this final stage, as illustrated in 

Fig. (3), to produce the resulting spectrum.
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The orthogonality of and Un will decrease it to the minimum, which will grow, as can be seen from the 

denominator.  

),( kmusicIncoherentP  . Thus, the highest peaks of the MUSIC spectrum are corresponding to the DOAs of 

the d signals impinging on the array. 

3.2 Simulation Results 

 To assess the performance of the MUSIC method, a computer program is created using MATLAB. With 

arrival angles of [-20° 0° 20°] and uncorrelated, respectively, the array is lighted. When compared to 

the white Gaussian noise in the background, the three sources are considered to have identical power, 

which is 0 dB. There are 128 pictures captured. then used to identify the DOA estimate on the MUSIC 

Beamformer. The outcomes shown in Figure (5) demonstrate that, when incident signals are expected 

to be uncorrelated, the MUSIC Beamformer can accurately determine the direction of arrival. Figure (5) 

displays the spatial spectral function produced by the multipath version of the signal at -20°, which is 

the situation in another scenario. 

 

 

(a)                                      (b) 

Fig. (5). Spatial Spectrum of MUSIC Estimations for a- Un-Coherent Sources b- Coherent 

Sources. 

 

As can be seen, the MUSIC algorithm is unable to determine the corresponding DOA of either of the 

linked signals at -20° and -20° since the direction of both signals could not be determined with 

sufficient accuracy. When it comes to identifying linked input signals, MUSIC fails. Figure (6b) shows 

that the response of the music is not sharp at the peaks as opposed to being sharp in the case of an 

input signal that is uncorrelated. The source covariance matrix does not meet the complete rank 

constraint required by the MUSIC for Eigen decomposition 
)( inE 
, which leads to this issue. Any 
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narrowband approach may be used to calculate the degrees of freedom (DOAs) at each frequency 

where is the noise subspace at frequency 
)( i rather than MUSIC.  

The incoherent method's conclusions and operation are straightforward, but it is susceptible to 

inaccurate wideband DOA estimations. Utilizing the narrowband into Line DOA computed using the 

Coherent Signal Subspace Method (CSSM) for each narrowband signal's Covariance matrix of the 

focus to the reference frequency. Wideband signal information may be used more effectively, and DOA 

estimation performance is superior than CSSM algorithm's low signal-to-noise ratio. The DOA 

estimated starting value [5], high signal to noise, and the ISSM method's performance below it make 

the CSSM algorithm susceptible. 

3. Coherent Frequency Combining   

Wideband non-adaptive DOAs are the coherent technique. introduced the CSSM in this section. The 

first approach for estimating wideband DOA is based on splitting the frequency band into non-

overlapping narrowbands and estimating narrowband DOA in each band. To get the final DOA 

estimate, the DOA estimates for the various bands are then added together. However, this method 

cannot handle coherent signal sources. The CSSM [20] is a different approach for handling coherent 

signal sources. This approach begins by using FFT to break down the wideband array data into a 

number of narrowband components. The narrowband array manifold matrices are then converted into 

focusing matrices in order to create matrices matching to a chosen reference frequency. The use of 

narrowband DOA estimation techniques, like the spectral estimation approach [5], is then applied to 

determine the directions of arrival. The spectrum estimating techniques are favourable since they need 

less computing effort than other techniques (such those based on least squares, maximum likelihood, 

etc.). Preliminary DOA estimations close to the real directions of arrival are needed for the CSSM 

method's focusing matrix design. 

  

 

Fig. (6). Basic Principle of Coherent Signal Subspace Method. 

 

 

 

Fig. (7). Block Diagram of the CSSM Wideband Adaptive Beamformer. 

 

The first method to coherently sum the correlation matrices of different frequency bins was CSSM, 

which Wang and Kaveh developed [5]. Using a transformation matrix (focusing matrix) that is 

dependent on the frequency bin, it merges the correlation matrices at various frequency bins into a 

single general correlation matrix at a single focusing frequency. This process is known as 

concentrating. Coherent techniques' general process is depicted in Figure (6-7). 
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A generic block architecture for the focused wideband adaptive beamformer is shown in Figure (7). In 

this method, a single time domain narrowband beamformer is used to concentrate the signal 

subspaces at various frequencies to a single frequency using a pre-processor that is implemented as a 

frequency dependent linear transformation matrix 
)( jT 
. Low computing cost, the ability to address 

the signal cancellation issue, and enhanced convergence qualities are the key advantages of the 

coherent technique. Theoretically, the CSSM should utilize a focusing matrix 
)( jT 
 fulfilling [5]. 

),(),()( 0  AAT jj 
                      (19) 

Where 
)( j
are the frequencies within the bandwidth of the signals and w0 is the focused frequency, 

i.e. 
)( jT 
focuses the signal subspaces 

),()(  jj AT
at frequencies 

)( j
onto the signal subspace 

),()( 0  AT j . The matrices 
),()(  jj AT
and 

),()( 0  AT j contain the steering vectors of the sources in 

their columns at frequencies 
)( j
 and 

)( 0
, respectively, where )(  is the DOAs vector. 

There are several approaches to design the focusing matrix 
)( jT 
in the following sections, we describe 

several representative focusing methods. They propose Rotational signal subspace focusing 

transformation (RSS).In [6] a quantities measure for The ratio of the array's SNR following and before 

the focusing operation is used to determine the focusing loss. The benefit of employing unitary 

focusing matrices is emphasized by the authors since they have no focusing loss. In order to solve the 

following constraint minimization issue (Hung and Kaveh [6] devised a unitary focusing matrix), they 

suggest unitary transformations as follows: 
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Where F
.

is the Frobenious matrix norm [20]. The solution to (22) is given by. 
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 Where the columns of 
H
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and 
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are the left and right singular vectors of 

H
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They 

named this focusing matrix the Rotational Signal Sub-space (RSS) focusing matrix. then the general 

focusing correlation matrix as. 
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Therefore, the issue is how to identify focusing angles that should match the signal's DOA but are not 

accessible. Finding focusing angles 
),( 0 A
that ought to be sufficiently near to the genuine DOAs 

typically involves employing low-resolution DOA estimating techniques. Some closely spaced DOAs, 

however, cannot be addressed using this method. Furthermore, focusing angles may not always result 

in a solution with the right value, unlike beginning values in other iterative approaches. For accurate 

estimates, focusing angles should be near to the genuine DOA; however, if they are not the same as 

the true DOA and the focusing frequency is not at the center of the signal's band, the bias will never 

reach zero. For high resolution techniques, the bias could be absolutely crucial. 
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5- Eigen-value based Diagonal Loading 

The EDL technique attempts to overcome the adaptive approach of the FDL technique by using the 

following equations to estimate [128]  

MXXeigdl kkR IR )()(                                (23) 

 Where α is a positive diagonal loading factor. I represents a unit matrix. with RXX replaced by 

the signal free correlation matrix and the loading factor (7). 
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     (24) 

with λ1 > λ2 >........ >λM denoting the ordered eigenvalues of signal-free RXX with M the dimension of 

interference subspace [7]. 

The algorithm can improve the presence of random array manifold vector error Poor adaptive 

beamforming algorithm. However, this method the primary The question is how to choose the amount 

of discretion to load. Usually selected based on experience special Given value, the most typical is 

10σ2, where said single sensor σ2 The noise power, the paper loaded in the selected amount of 

sediment it was 10σ2.The concept of diagonal loading is straightforward. We use, 
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In place of the estimated spectral matrix in order to design w. We use LxxR ),( 
instead of 

),( xxR
because it is not used as an estimate of 

),( xxR
.  

based on eigen values Using diagonal loading factors, which are independent of direction inaccuracy, 

is the preferred method. The ways to estimate the loading factor using EDL need precise knowledge of 

the steering vector error, just as narrowband techniques, and adapt current techniques for wideband 

beamforming to appropriately estimate the loading factor. then using Eq. (18) to represent the new 

correlation matrix in beam-patterns or a pseudo spectrum. 

6.  Simulation Results 

Under these circumstances, the result of the CSSM method is shown in the last assumption, where it 

is expected that the signal at -20° is a multipath variant of the signal at 20°. For each signal, the SNR 

is adjusted to -10 and 10 dB. 

 

Fig. (8). Spatial Spectrum of the CSSM Algorithm in the Coherent Signals. 

 

Figure (8) makes it evident that the spatial spectral function for the case of correlated signals was 

produced using the CSSM algorithm. 

7. Behaviour Analysis for Different Algorithms 

Methods for estimating DOA rely on either the array manifold's parametric structure or the signals' 

non-Gaussianity or cyclo-stationarity. These approaches include multiplying a weight matrix by the 



 

250  

incoming data matrix in order to estimate the waveform of the signals. variables that have an impact 

on the DOA. 

1. The array's element count. 

2. Signal-to-Noise Ratio, second. 

3. Quantity and the distance between array items.  

4. The number of signals event sampled. 

 

1- Effect number of elements of the antenna   array on DOA’s estimation 

The number of array elements is assumed to be a varying variable during the simulation where it 

varies from 5 to 11 elements.  

The other settings are SNR = 0dB and 128 snapshots. Figure (9) illustrates the relationship between 

the number of array elements and the DOA estimation. It is obvious that as the number of array 

elements rises, the MUSIC Method becomes more accurate in estimating the DOA of incident signals. 

This is due to the fact that adding more array components will result in a narrower beam around the 

directions of incident signals. 

 

 

Fig. (9). The effect of the number of elements on DOA’s on MUSIC algorithm. 

 

2- Effect of The Signal to Noise Ratio (SNR)on DOA’s Estimation    

During the simulation, it is assumed that the signal to noise ratio is a variable that changes from -10 

dB to 10 dB for each signal. The 11 elements in the array, which are spaced apart by half a 

wavelength, are regarded as making up a linear array. 128 snapshots are used to evaluate the array 

covariance matrix and the spatial spectrum of the MUSIC technique. In the figures below, the SNR's 

impact on DOA estimate is depicted. Figure (10), which shows that MUSIC Methods can precisely 

estimate the DOA of incoming signals as SNR increases, makes this point quite evident. 

 

Fig. (10). The effect of the signal to noise ratio on  DOA’s  MUSIC algorithm. 
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This is due to the fact that higher SNR will result in a narrower beam around incident signal 

directions. The peaks are sharper when the noise is lower. The peaks spread out as a result of the 

additional noise. As the SNR increased, the performance improved, indicating that the SNR had an 

impact on the resolution of the MUSIC technique. It is evident that the ratio of the output peaks to the 

noise level at the array's output grows correspondingly as SNR rises. 

 

3- Effect the Number of Snapshots of The Signal on DOA’s Estimation 

To test the method algorithm estimator's capabilities with various signal snapshots, a simulation 

program was run. The number of snapshots is assumed to be a variable during the simulation with a 

range of 50 to 1000 snapshots for each signal. This differs from the assumptions we made in the 

earlier analysis of the influence SNR. Figure (11), which shows how the MUSIC algorithm can see that 

as the number of pictures increases, the peaks in the MUSIC spectrum get sharper, is abundantly 

 

 

Fig. (11). The effect of number of snapshots signal on DOA’s MUSIC algorithm. 

 

4- Array antenna Spacing & resolution 

The performance of the beamformer depends on the array's element spacing and number, as shown by 

an examination of the MUSIC algorithm equation from the Beam Pattern section. 

 

 

Fig. (12). Performance quantity music dependent on the spacing and array's elements. 
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Figure (12) above shows how altering these settings impacts the spatial filtering capability of the 

beamformer. Figures are influence the SNR and element count for DOA separation. The development of 

an adaptive antenna system based on direction of arrival benefits from this approach. 

4. Conclusion 

This article discusses the configurations of smart antenna systems as well as the reasons to use 

adaptive antenna array for DOA. It also describes the fundamental functions and parts of adaptive 

antenna array for DOA and interference cancellation for wideband signal. Wideband DOA performance 

was examined utilizing theoretical framework and simulation with MATLAB software.  

The simulation results displayed in this study indicate that the uniform linear array-based DOA 

estimate approaches are effective. Computer simulation is used to study and examine two DOA 

estimation techniques for wideband signals. These techniques are incoherent signal subspace methods 

(ISSM), which are wideband DOA estimation techniques for high resolution estimate of angles of 

arrival of several wideband plane waves as part of the MUSIC algorithm. The CSSM, or second method, 

combines a solid, almost ideal data-adaptive statistic. To assure a statistically sound pre-processing of 

wideband data, this approach is employed in conjunction with improved focusing matrix design. The 

response of the MUSIC is not sharp at the peaks whereas it was sharp in the case of uncorrelated 

input signal condition, which is why incoherent approaches like IMUSIC fail when it comes to 

identifying correlated input signals. The source covariance matrix does not meet the complete rank 

constraint required by the MUSIC for Eigen decomposition, which leads to this issue. CSSM with TCT 

performs better, however it is not a fair estimate method. to lessen or eliminate bias and increase 

resolution. When array defects of any type are taken into consideration, Eigenvalue EDL is resilient. 

The higher performance of the suggested approaches on beam-pattern control, output SINR 

augmentation, and robustness against have been demonstrated by extensive numerical testing. When 

diagonal loading is used Wideband signals were used to study the situation of DOA estimating, and 

the impact of bandwidth on estimator accuracy was examined using computer simulations, the 

Incoherent method, and coherent subspace method-based techniques like MUSIC. It is obvious that 

the beamformer may be used to load correlated signals using the spatial spectral function produced by 

the CSSM method. 
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