
162

 مجلة جامعة بني وليد للعلوم الإنسانية والتطبيقية

 ليبيا -تصدر عن جامعة بني وليد
 bwu.com/index.php/bwjhas/index-https://jhasWebsite:

 0202العدد التاسع والعشرون،

Design and Implementation of a Self-Checking Rotator Using

Berger Code
A. M. Ejamail1*, A. A. Khalleefah2 , A. M. Salim3, A. H. Maamar4

1, 3Computer engineering & IT, College of Technology Sciences, Bani-Walid -Libya
2, 4Department of Computer engineering, College of ELECTRONIC TECHNOLOGY, Bani-Walid –Libya

*Crosspnding author: aAdel.m.Ejamail@gmail.com

 تاريخ الاستلام: 10-26-0202 تاريخ القبول: 00-26-0202 تاريخ النشر: 0202-20-20

Abstract: The advances in semiconductor generation have greatly improved the scale of integration.

Today virtual systems are extra complicated than ever earlier than. These complex circuits are greater

susceptible temporary and intermittent faulty. The complexity of the digital circuits results in extra

crosstalk, noise, and different assets of temporary errors during normal operations. Conventional off-

line testing techniques cannot guarantee detection of these faults; they can be detected by using on-

line or concurrent error detection (CED). Concurrent error detection methods allow digital systems to

affirm the correctness in their effects in the course of regular operation. Berger Code is one of the

famous codes for CED applications because it could stumble on all unidirectional errors in digital

structures. This paper proposes a layout to achieve the self-checking checker used of Berger code as a

means of incorporating CED right into a self-checking for the rotate register.

Keywords: Berger Code, Rotator Register, Two-Rail Checker (TRC), Self-checking.

1. Introduction

Since the 1960s, concurrent error detection techniques have been used extensively in commercial

digital systems [1]. Concurrent error detection's primary goal is to perform real-time checks on system

outputs to ensure data integrity by identifying temporary or permanent faults while the system is

functioning normally. Concurrent error detection makes it possible to find errors as the system is

running. is essential for a broad range of applications, from avionics and space to telephone switching

networks, online transaction processing, etc. An online error detector of your choice can be added to a

computer system. These detectors operate under the fundamental principle of redundancy in hardware

replication, information (redundant codes), software, or execution time. Redundancy is the use of

additional resources above and beyond what is necessary for an unchecked system [2]. By some other

words this redundancy can take the form of additional hardware (hardware redundancy), additional

software (software redundancy), additional information (information redundancy), or multiple code

executions on a single piece of hardware (time redundancy) [3]. Only information redundancy using

Berger code checkers in Totally Self-Checking (TSC) is the focus of this paper.

2. Rotate register

 A rotate register is a virtual circuit includes a cascade of flip flops, wherein the output of one flip flop

is connected to the input of the subsequent turn flop. The data stored within the rotate register can be

shifted from one location to the following vicinity. An N-bits rotate register can be shaped by means of

connecting N-flip- flops where each flip- flop keep a single bit of data. Registers are used for data

storage or for the motion of data; they're normally used interior Calculators or computer systems to

save data inclusive of two Binary numbers before they're added together, or to convert data from both

a parallel to serial or serial to parallel layout [4]. Figure 1 shows the impact of facts motion from left to

right through a rotate register.

https://jhas-bwu.com/index.php/bwjhas/index
mailto:Adel.m.Ejamail@gmail.com

163

Fig. 1: rotate register.

Figure 2 shows rotate right operation, the serial output of the register is connected to the serial input

of the register.

 Fig. 2: rotate Right register.

By applying clock pulses data is shifted right. The data shifted out of the serial out pin at the right

hand side is recirculated back into the shift register input at the left hand side. Thus the data is

rotated right within the register. Figure 3 shows rotate left operation, the serial output of the register is

connected to the serial input of the register.

 Fig. 3: rotate Left register.

By applying clock pulses data is shifted left. The data shifted out of the serial out pin at the left hand

side is recirculated back into the shift register input at the right hand side. Thus the data is rotated

left within the register.

3. SELF-CHECKING CIRCUITS

Self-checking is the capability of a logic component (chips, boards, or assembled system) to

automatically check for errors [5]. Self-checking circuits enable on-line error detection, which enables

faults to be found as the circuit is being used normally. It has the ability to identify both temporary

and irreversible faults [6]. To the original circuit (functional unit), it is intended to add some circuitry.

If there is an error in the functional unit, this additional circuit will check the output of the functional

unit to ascertain it [7]. Self-checking circuits can be designed using a variety of codes. Only separable

codes that separate the information bits from the check bits are the focus of this paper. The Berger

code converts a word's number of 1s into a binary representation. The count is added to the data after

the binary word is completed. The best AUED (All Unidirectional Error Detecting) codes are called

Berger codes. It can identify all unidirectional bit errors, such as when one or more ones become zeros,

but it cannot recognize when zeros become ones. The error won't be noticed if the same number of bits

flip from one to zero as they do from zero to one [8]. Two-Rail Checker (TRC) A one bit output is

insufficient for a Totally Self-Checking (TSC) circuit because a stuck-at-fault on the output resulting in

the "good" output could not be detected [2, 9, 10, 11]. A two rail (1-out-of-2) code is typically used to

encode the output of a TSC circuit. Two complementary codewords are compared using a two-rail

Q3 Q2 Q0Q1

D3 D2 D1 D0

1-Bit 1-Bit 1-Bit 1-BitD Qserial Data

Input

serial Data

Output

Parallel Data Input

Parallel Data Output

LSBMSB

ROTATE RIGHT

MSB LSB

1-Bit1-Bit1-Bit1-Bit

ROTATE LEFT

MSB LSB

1-Bit1-Bit1-Bit1-Bit

164

checker unit (TRC). The checker decides whether the functional circuit's output is an acceptable or

unacceptable codeword [2]. Figure 4's block diagram depicted the suggested design for the self-

checking rotator register checker. The proposed 4-bit Rotator Left/Right register resembles a shift

register with taps added to each stage of input and output in a serial-in/serial-out design. Din (Serial

Input) is where serial data shifts in. The first Din bit data appears at (Q4) after a certain number of

clocks that is equal to the number of bits. Start by entering the rightmost bit of the four bits (1001)

into the register. As soon as data are entered into the register, the Check Symbol Generator (CSG)

generates a code word for the data, which is then stored in the 3-bit register and used to compare the

inputs from the two rails.

Self-checking can be defined as the ability to automatically check logic (chip, board, or assembled

system) for errors [5]. A self-checking circuit allows online fault detection. This means that faults can

be detected during normal operation of the circuit. It can detect the presence of both transient and

permanent errors [6]. The idea is to add some circuits to the original circuit (functional unit). This

additional circuitry examines the outputs of the functional units and determines if the functional units

are faulty [7]. Many codes can be used to design self-checking circuits. This article will only focus on

separable code where the information bit is separated from the check bit. A Berger code counts the

number of ones in a word and represents it in binary. Complement binary words and add counts to

the data. The Berger code is the best systematic AUED (All Unidirectional Error Detecting) code detects

all unidirectional errors. If one or more 1's are converted to 0's, they can be identified, but if 0's are

converted to 1's at the same time, they are not. If the same number of bits changes from 1 to 0 as they

change from 0 to 1, no error is detected [8]. A 1-bit output is not sufficient for a full self-test (TSC)

circuit because it cannot detect stuck-at faults in the output that lead to a 2-Rail Checker (TRC) “good”

output [2, 9], 10, 11]. The output of the TSC circuit is typically encoded with a two-rail (1 of 2) code. A

Two-Rail Checker Unit (TRC) is used to compare two complementary codewords. A validator

determines whether the output of a functional circuit is a valid or invalid codeword [2]. The block

diagram in Figure 4 shows a proposed design for implementing a self-checking rotator register

checker. The proposed 4-bit rotator left/right register looks like a serial-in/serial-out shift register with

additional taps at each input and output stage. Serial data is inserted into Din (serial input). After a

number of clocks equal to the number of bits, the first Din bit data appears on (Q4). Enter 4 bits

(1001) into the register, starting with the rightmost bit. As data enters a register, a check symbol

generator (CSG) generates codewords for the data. A 3-bit register contains complementary codewords

used at the two rail inputs for comparison.

Fig. 4: 4 Bit Rotator Left/Right register.

Q1

G1 G2 G3 G6G5G4 G12G11G10G9G8G7

A1 A2 A3 A4

D in

CLK

RR

RL

CLK CLK CLK CLK

Q1 Q2

Q2

Q4

Q4Q3

Q3D1 D2 D3 D4

FF0 FF1 FF3FF2

TOW RAIL

G

F

Berger code generator

 CSG

3-BIT REGISTER

 (PIPO)

SEL1

SEL2

165

 Since no information bit is discarded except for their position the Berger check of the result of rotate

operation is simply the Berger check of the operand, since no information bit and the numbers of 1’s is

the same, if no error is detected. After the operation of register rotate (left/right) done, the CSG

generates new check bits code for that word. In order to detect faults on the word after the operation

we drive the stored check bits code and the inverted created one to the Two -rail checker. The steps in

the checking procedure can be implemented as shows the flowchart in figure 5. The designs are

implemented in Verilog HDL for simulation and synthesis. The Waveforms below shows the output of

the Simulation Processor. The waveform in Figure 6 shows the Reset register, loading data to the

rotator register and execute the rotate left / rotate right to the loaded Data, so the signals as follow:

CLK: clock signal. Din: Data in shows the input data into the register.Q1: first Bit of the output data

shows the value of first bit in the register.Q2: second Bit of the output data shows the value of second

bit in the register. Q3: third Bit of the output data shows the value of third bit in the register.Q4:

fourth Bit of the output data shows the value of fourth bit in the register. The table 1 shows the

control state for the used register. The waveform in

Fig. 5: Flowchart shows steps in the checking procedure.

Fig. 6: Waveform shows loading data to the rotator register.

start

End

Load data into
register

Berger code generator
generate CSB

Store inverted CSB into
3 bits register as a

reference

RR / RL
?

YesNo

No

Yes

Berger code generator
generate new CSB

Comparing new SCB with
stored SCB through Two

rail checker TRC

? TRC
= 10 or

01

Error alert

166

Table 1: control state for the register.

Operation RR RL

Reset register 0 0

rotate right 1 0

rotate left 0 1

Load data 1 1

Figure 7 shows the Berger Code check symbol Generator for 4-bit, where the input for CSG is the

output for the 4-bit rotator register, the signals as follow:

CLK: clock signal. Q1: first Bit of the output data shows the value of first bit in the register.Q2: second

Bit of the output data shows the value of second bit in the register.

Fig. 7: Waveform shows Berger code check symbol generator.

 Q3: third Bit of the output data shows the value of third bit in the register. Q4: fourth Bit of the

output data shows the value of fourth bit in the register.Sig21: first Bit of the CSG output shows the

value of first bit in the CSG output. Sig22: second Bit of the CSG output shows the value of second bit

in the CSG output. Sig23: third Bit of the CSG output shows the value of third bit in the CSG output.

The waveform in the Figure 8 shows the implementation loaded data to the register, generate the

check symbol bits word, pushed in complement of the check symbol bits word to 3-bit register, rotate

left/right the register, drive data to two rail checker, and obtain the result.

Fig. 8: Waveform shows the Simulation of rotator implementation processor.

167

4. Conclusion

This paper presents a technique for implementing fault secure rotators based on Berger code. In this

design Berger code generator generates check bits code for each input word of the shift register, since

no information bit and the numbers of 1’s is the same, if no error is detected. After the operation of

register rotate left/right done, the Berger code generator generates check bits code for that word. In

order to detect faults on the word after the operation we drive the stored check bits code and the

inverted created one to the Two -rail checker. This design achieves high levels of reliability by means of

moderate hardware cost. The system can detect all Unidirectional Error in the rotator.

5. References

 [1]. Subhasish Mitra, "Diversity Techniques for Concurrent Error Detection", Technical Report, Center for reliable

computing, May 2000.

[2] P. K. Lala. Self-Checking and Fault-Tolerant Digital System Design. Morgan Kaufman Publishers, San

Francisco, 2001.

[3]. Manoj Franklin, "A Study of Time Redundant Fault Tolerance Techniques for Superscalar Processors"

Department of Electrical & Computer Engineering, Clemson University, Clemson, USA, 1995 IEEE.

[4]. Tony R. Kuphaldt Lessons In Electric Circuits,

Volume IV Digital Fourth Edition, last update

 November 01, 2007, openbookproject.net/

electricCircuits.

[5] Huda Abugharsa, and Ali Maamar," Self Checking Systolic LIFO Stack",7th WSEAS Int. Conf. on

Instrumentation Measurement, Circuits and Systems (IMCAS '08), Hangzhou, China, April 6-8, 2008.

[6] KHADIJA F. O. ALGHEITTA. AMAL J. MAHFOUD. ALI H. MAAMAR. Design of a Self-Checking Up Counter.

International Conference on Advanced in Computing, Engineering and Learning Technologies, Abu Dhabi, UAE,

2013.

[7] Mustafa Abd-El-Barr," Design and Analysis of Reliable and Fault-Tolerant Computer Systems ", Imperial College

Press, 2007, ISBN 1-86094-668-2.

[8] VARADAN SAVULIMEDU VEERAVALLI. Diagnosis And Error Correction For A Fault-Tolerant Arithmetic And

Logic Unit For Medical Microprocessors, Graduate School- New Brunswick Rutgers, The State University of New

Jersey October, 2008.

[9] B. W. Johnson. Design and Analysis of Fault Tolerant Digital Systems. Addison-Wesley, Reading, MA, 1989.

[10] D. K. Pradhan. Fault-Tolerant Computing: Theory and Techniques, volume I. Prentice Hall, Englewood Cliffs,

New Jersey, 2003.

[11] T. R. Stankovic, M. K. Stojcev, and G. Ordjevic. Design of Self-Checking Combinational Circuits. In Proc. of the

International Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Services, volume 17, pages

763-768, October 2003.

