مجلة جامعة بني وليد للعلوم الإنسانية والتطبيقية تصدر عن جامعة بني وليد - ليبيا Website: <u>https://jhas-bwu.com/index.php/bwjhas/index</u> العدد الثلاثون، ديسمبر 2023

Local Functions and Composition With Euclidean Smooth Functions

Ebtesam Abdullah Alousta

Ebtesam_alousta@yahoo.com

 Department of Mathematics, University of Tripoli, Tripoli, Libya

 2023-10-25-2023

 تاريخ الاستلام:25-10-2023

 تاريخ الاستلام:25-10-2023

الملخص:

في [2] يتم تعريف الوظيفة المحلية على مجموعة غير فارغة والتركيب مع الدوال الملساء الإقليدية لمجموعة من الوظائف، وهو تعميم مجرد لمجموعة الوظائف في الفضاء الإقليدي [12]. توفر هذه الورقة الدوال المحلية والتركيب مع الدوال الإقليدية السلسة لمجموعة لا تحصى من الدوال. يتم تقديم نظريات وأمثلة مهمة تتعلق بالوظائف المحلية والتركيب مع الوظائف الإقليدية السلسة.

الكلمات الدالة: مفهوم الدوال، الطوبولوجيا الأولية، المشتقات الجزئية، الدوال الملساء.

Abstract

In [2] the local function on a nonempty set M and the composition with Euclidean smooth functions are defined for collection of functions C, which is an abstract generalization of the collection of C^{∞} functions on the Euclidean space [12]. This paper provides local functions and composition with Euclidean smooth functions for a countable set of functions $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$. Important theorems and examples concerning local functions and composition with Euclidean smooth functions are given.

Keywords: Functions concept, initial topology, partial derivatives, smooth functions.

Introduction

Throughout this paper, let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions defined on a nonempty set M. A real function $f: M \to \mathbb{R}$, defined on a topological space (M, τ) is said to be a local C-function on M if, for any $p \in M$, there exist a neighborhood $U \in \tau$ of p and a function $g \in C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ such that f | U = g | U [12].

The set *scC* is defined by setting $f \in scC$ if and only if there exist $f_1^*, f_2^*, ..., f_n^* \in C$, $n \in N$, and a function $\omega \colon \mathbb{R}^n \to \mathbb{R}$ of class C^{∞} such that

$$f = \omega \circ (f_1^*, f_2^{*}, ..., f_n^*)$$

In other words[4]:

$$scC = \left\{ \omega \circ \left(f_1^*, f_2^*, ..., f_n^* \right) : f_1^*, f_2^*, ..., f_n^* \in C, \ \omega \in C^{\infty} \ (\mathbb{R}^n, \mathbb{R}), \ n \in N \right\}.$$

The paper is organized as follows. In **Section 2**, we present the basic definitions. This includes concepts in topology and analysis and some of theorems and examples are given. **Section 3**, provides the concept of local functions and some of theorems and examples concerning local functions are proved. Finally in **Section 4**, we studies the

2. Basic Definitions

Definition 2.1. [1] Let $\{(X_{\lambda}, \tau_{\lambda})\}_{\lambda \in \Lambda}$ be a collection of topological spaces and let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a collection of functions $f_{\lambda} : X \to X_{\lambda}$, where X is an arbitrary nonempty set, $\lambda = 1, 2, ..., n, n \in N$. A topology on X, denoted by τ_c , is initial with respect to $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ if it has the following property: for any topological space Y, a function $g : (Y, \tau) \to (X, \tau_c)$ is continuous if and only if the composite $f_{\lambda} \circ g : (Y, \tau) \to (X_{\lambda}, \tau_{\lambda})$ is continuous for each $\lambda = 1, 2, ..., n, n \in N$.

We have the following theorem

Theorem 2.1. [1] Let τ_c be the initial topology on a nonempty set X with respect to $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$. If τ is any topology on X such that each $f_{\lambda} : (X, \tau) \rightarrow (X_{\lambda}, \tau_{\lambda})$ is continuous, then τ_c is weaker than τ , i.e., $\tau_c \subseteq \tau$.

Proof. Let $I_X: (X,\tau) \to (X,\tau_c)$ be the identity function. Since $f_{\lambda} = f_{\lambda} \circ I_X: (X,\tau) \to (X_{\lambda},\tau_{\lambda})$ is continuous for each $\lambda = 1,2,...,n,n \in N$, then $I_X: (X,\tau) \to (X,\tau_c)$ is continuous. Consequently if $U \in \tau_c$, then $I_X^{-1}(U) = U \in \tau$. Hence $\tau_c \subseteq \tau$.

Example 2.1. The usual topology on \mathbb{R}^n is the initial with respect to the projections $\pi_{\lambda} : \mathbb{R}^n \to \mathbb{R}$, where $\pi_{\lambda}(x_1, x_2, ..., x_n) = x_{\lambda}, \ \lambda = 1, 2, 3, ..., n$. So a function $g = (g_1, g_2, ..., g_n) : Y \to \mathbb{R}^n$, where *Y* is a topological space, is continuous if and only if $\pi_{\lambda} \circ g = g_{\lambda} : Y \to \mathbb{R}$ is continuous.

Lemma 2.1. Let $C_1 = \{f_1, f_2, f_3, ..., f_n, n \in N\}, C_2 = \{g_1, g_2, g_3, ..., g_n, n \in N\}$ be two sets of real-valued functions on a nonempty set M. If $C_1 \subseteq C_2$, then $\tau_{C_1} \subseteq \tau_{C_2}$.

Proof. A subbase of τ_{C_1} is $\beta_1 = \{f^{-1}(U): f \in C_1, U \text{ open in } \mathbb{R}\}$, a subbase of τ_{C_2} is

$$\beta_2 = \{ f^{-1}(U) \colon f \in C_2, U \text{ open in } \mathbb{R} \}$$

 $= \{f^{-1}(U): f \in C_1, U \text{ open in } \mathbb{R}\} \cup$

$$\{f^{-1}(U): f \in C_2 - C_1, U \text{ open in } \mathbb{R}\}$$

 $= \beta_1 \bigcup_{\{f^{-1}(U): f \in C_2 - C_1, U \text{ open in } \mathbb{R}\}.$ Since $= \tau_{C_2}$.

 $\beta_1 \subseteq \beta_2$, then $\tau_{C_1} \subseteq \tau_{C_2}$.

Definition 2.2. [9] Let *G* be an open subset of \mathbb{R}^n . A function $f: G \to \mathbb{R}^k$ is called infinitely differentiable, or of class C^{∞} provided all partial derivatives of f, of all orders, exist and are continuous on *G*.

Let $C^{\infty}(G, \mathbb{R}^k)$ denotes the set of all functions $f: G \to \mathbb{R}^k$ of class C^{∞} . Or more generally (see, for instance, [9]).

Definition 2.3. Let *G* be an open subset of \mathbb{R}^n , let *r* be a positive integer. A function $f: G \to \mathbb{R}^k$ is said to be of class C^r if all its partial derivatives up to the order *r* exist and are continuous on *G*. The set of all C^r functions $f: G \to \mathbb{R}^k$ is denoted by $C^r(G, \mathbb{R}^k)$. Thus $f \in C^{\infty}(G, \mathbb{R}^k)$ if and only if $f \in C^r(G, \mathbb{R}^k)$ for r = 0, 1, 2, ..., where $C^0(G, \mathbb{R}^k)$ is the set of all continuous functions on *G* with values in \mathbb{R}^k .

3. Local Functions

Let (M, τ) be a topological space with a topology τ , and $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ a set of real-valued functions defined on M. As in [3, 4, 6, 8, 12 and 14], local functions are defined as following :

Definition 3.1. A real function $f: M \to \mathbb{R}$, defined on a topological space (M, τ) is said to be a local *C*-function on *M* if, for any $p \in M$, there exist a neighborhood $U \in \tau$ of *P* and a function $g \in C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ such that f | U = g | U. The set of all

local *C*-functions on *M* will be denoted by $C_{(M,\tau)}$ or, simply, C_M . Another way to define a local *C*-function is the following [12]:

A function f defined on a topological space M is a local C-function provided there exists an open covering \mathcal{U} of the space M, such that for every set $U \in \mathcal{U}$ there exists a function $g_U \in C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ with $f | U = g_U | U$.

The following lemma is stated without proof in [12].

Lemma 3.1. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions over a topological space (M, τ) . Then every $f \in C$ is a local *C*-function on *M*, i.e., $C \subseteq C_M$.

Proof. Let $f \in C$. Let $p \in M$. Take g = f and U = M, then f | U = g | U. It follows that $f \in C_M$. Hence $C \subseteq C_M$.

The following definition is given in [20] and adopted by [3, 4, 11 and 14].

Definition 3.2. A set of real-valued functions $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ on a topological space M is said to be closed with respect to localization if $C = C_M$. To prove that $C = C_M$, it is enough to show that $C_M \subseteq C$.

Lemma 3.2. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions over a topological space (M, τ) . Then *C* is closed with respect to localization if and only if $C_M \subseteq C$.

Proof. If *C* is closed with respect to localization, i.e., $C = C_M$, then $C_M \subseteq C$. Conversely, if $C_M \subseteq C$, then by Lemma 3.1 we have $C \subseteq C_M$. Therefore $C = C_M$, so *C* is closed with respect to localization.

Theorem 3.1. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions on a topological space M. Then $(C_M)_M = C_M$.

Proof. Let $D = C_M$. Then we want to show that $D_M = D$. By Lemma 3.2, it is enough to show that $D_M \subseteq D$. Now, if $f \in D_M$, then for each $p \in M$ there exist a neighborhood $U \in \tau$ of p and a function $g \in D$ such that f | U = g | U. Since $g \in D = C_M$, then there exist a neighborhood V of p and a function $h \in C$ with g | V = h | V. Since $W = U \cap V$ is a neighborhood of $p \in M$, $h \in C$, and f | W = h | W, then $f \in C_M = D$. Hence

 $D_M \subseteq D$. Therefore $D_M = D$, by Definition 3.2, we have $D = C_M$ is closed with respect to localization.

Example 3.1. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be the set of all continuous real-valued functions on a topological space M. Then C is closed with respect to localization, i.e., $C_M = C$.

Proof. Let $f \in C_M$. Then there exists an open cover \mathcal{U} of M such that for each $U \in \mathcal{U}$ there exists a function $g_U \in C$ with $f | U = g_U | U$. Now, let V be an open set in \mathbb{R} . Then

$$f^{-1}(V) = M \cap f^{-1}(V)$$
$$= \bigcup_{U \in \mathcal{U}} U \cap f^{-1}(V)$$
$$= \bigcup_{U \in \mathcal{U}} U \cap g_U^{-1}(V)$$

which is open, because g_U is continuous and U is open. Then f is continuous. Hence $f \in C$. So $C_M \subseteq C$, by Lemma 3.2, C is closed with respect to localization. The following lemma is in order.

Lemma 3.3. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions on a nonempty set M. Let τ_1 and τ_2 be two topologies on M. If $\tau_1 \subseteq \tau_2$, then $C_{(M,\tau_1)} \subseteq C_{(M,\tau_2)}$.

Proof. Let $f \in C_{(M,\tau_1)}$. Then for each $p \in M$, there exist a neighborhood $U_p \in \tau_1$ and a function $g \in C$ such that $f | U_p = g | U_p$. Since $\tau_1 \subseteq \tau_2$, then $U_p \in \tau_2$ and $f \in C_{(M,\tau_2)}$. Consequently $C_{(M,\tau_1)} \subseteq C_{(M,\tau_2)}$.

Lemma 3.4. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ and $D = \{g_1, g_2, g_3, ..., g_n, n \in N\}$ be two sets of real-valued functions on a nonempty set M and let τ be a topology on M. If $C \subseteq D$, then $C_M \subseteq D_M$.

Proof. Let $f \in C_M$. Then for each $p \in M$, there exist a neighborhood $U_p \in \tau$ and a function $g \in C$ such that $f | U_p = g | U_p$. Since $C \subseteq D$, then $g \in D$. Hence $f \in D_M$. Thus $C_M \subseteq D_M$. **Lemma 3.5.** Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ and $D = \{g_1, g_2, g_3, ..., g_n, n \in N\}$ be two sets of real-valued functions on a set M and let τ_1, τ_2 be two topologies on M. If $C \subseteq D$ and $\tau_1 \subseteq \tau_2$, then $C_{(M,\tau_1)} \subseteq D_{(M,\tau_2)}$.

Proof. From Lemma 3.4, we have $C_{(M,\tau_1)} \subseteq D_{(M,\tau_1)}$. (1)

By Lemma 3.3, we have $D_{(M,\tau_1)} \subseteq D_{(M,\tau_2)}$. (2)

From (1) and (2), we have $C_{(M,\tau_1)} \subseteq D_{(M,\tau_2)}$.

4. Composition with Euclidean Smooth Functions.

Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions defined on a nonempty set M. As in [8, 11 and 14], the set scC is defined by setting $f \in scC$ if and only if there exist $f^{*_1}, f_2^{*_2}, ..., f_n^{*_n} \in C$, $n \in N$, and a function $\omega \colon \mathbb{R}^n \to \mathbb{R}$ of class C^{∞} such that $f = \omega \circ (f_1^{*_1}, f_2^{*_2}, ..., f_n^{*_n})$.

In other words [4, 5, 6, 10, 11 and 14]:

 $scC = \left\{ \omega \circ \left(f_1^*, f_2^*, ..., f_n^* \right) : f_1^*, f_2^*, ..., f_n^* \in C, \ \omega \in C^{\infty} (\mathbb{R}^n, \mathbb{R}), \ n \in N \right\}.$

Lemma 4.1. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions defined on a nonempty set M. Then $C \subseteq scC$.

Proof. Let $f \in C$ and let $I_{\mathbb{R}}:\mathbb{R} \to \mathbb{R}$ be the identity function. Since $I_{\mathbb{R}} \in C^{\infty}(\mathbb{R}, \mathbb{R})$, then $I_{\mathbb{R}} \circ f \in scC$. Since $f = I_{\mathbb{R}} \circ f$, then $f \in scC$. Hence $C \subseteq scC$.

Corollary 4.1. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions on a nonempty set M. Then scC = C if and only if $scC \subseteq C$.

Proof. If scC = C, then $scC \subseteq C$. Conversely, if $scC \subseteq C$, then by the preceding lemma we have $C \subseteq scC$. Consequently scC = C.

The following definition is given in [4, 11, 12 and 14].

Definition 4.1. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions over a nonempty set M. If scC = C, then C is said to be closed with respect to composition with Euclidean smooth functions.

Lemma 4.2. Let C_1, C_2 be two sets of real-valued functions on a nonempty set M. If $C_1 \subseteq C_2$, then $scC_1 \subseteq scC_2$.

Proof. Let $f \in scC_1$. Then $f = \omega \circ (f_1, f_2, ..., f_n)$ for some $f_1, f_2, ..., f_n \in C_1$, $n \in N$, and some $\omega \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$. Since $C_1 \subseteq C_2$, then $f_1, f_2, ..., f_n \in C_2$ and $f \in scC_2$. Hence $scC_1 \subseteq scC_2$.

Example 4.1. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be the set of all continuous real-valued functions on a topological space M. Then $scC \subseteq C$.

proof. Let $f \in scC$. Then there exist $f_1, f_2, ..., f_n \in C$, $n \in N$, and a function $\omega \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ such that $f = \omega \circ (f_1, f_2, ..., f_n)$. Then f is continuous because ω is continuous, $(f_1, f_2, ..., f_n)$ is a continuous function and the composition of two continuous functions is a continuous function. This means that $f \in C$. Hence $scC \subseteq C$.

Theorem 4.1. Let $C_0 = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions defined on a nonempty set M. Then the initial topology with respect to C_0 and scC_0 coincide, i.e., $\tau_{C_0} = \tau_{scC_0}$.

proof. Let $f \in C_0$. By Lemma 4.1, $C_0 \subseteq scC_0$. Then $f \in scC_0$ and $f:(M, \tau_{scC_0}) \rightarrow \mathbb{R}$ is continuous for each $f \in C_0$. But τ_{c_0} is the weakest topology such that each $f \in C_0$ is continuous. Hence $\tau_{C_0} \subseteq \tau_{scC_0}$. (3) On the other hand, let $g \in scC_0$. Then $g = \omega \circ (f^*_1, f^*_2, ..., f^*_n)$ for some $f^*_1, f^*_2, ..., f^*_n \in C_0$ where $n \in N$, and some $\omega \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$. Since the topology of \mathbb{R}^n is the initial with respect to the projections $\pi_i : \mathbb{R}^n \to \mathbb{R}$, where $\pi_i(x_1, x_2, ..., x_n) = x_i$, and $\pi_i \circ \left(f_1^*, f_2^*, \dots, f_n^*\right) = f_i : \left(M, \tau_{C_0}\right) \to \mathbb{R} \text{ is continuous, then } \left(f_1^*, f_2^*, \dots, f_n^*\right) : \left(M, \tau_{C_0}\right) \to \mathbb{R}$ $g = \omega \circ (f_1^*, f_2^*, ..., f_n^*): (M, \tau_{C_0}) \to \mathbb{R}$ of two ${\rm I\!R}^{\,n}$ is continuous. So the composition continuous functions is continuous. Hence $g:(M,\tau_{c_0}) \rightarrow \mathbb{R}$ is continuous for all $g \in scC_0$. But τ_{scC_0} is the weakest topology on M such that each $g \in scC_0$ is continuous. It follows that $\tau_{scC_0} \subseteq \tau_{C_0}$. (4) From (3) and (4), we have $\tau_{c_0} = \tau_{scC_0}$. In general, by Lemma 3.1, $C \subseteq C_M$ nevertheless the following theorem says that

 $\tau_C = \tau_{C_M}$

Theorem 4.2. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions defined on a nonempty set M. Then $\tau_c = \tau_{C_M}$, where C_M is the set of all local C-functions with respect to the topology τ_c on M.

Proof. Let $f \in C_M$. Then for each $p \in M$, there exist a neighborhood $U_p \in \tau_c$ of p and a function $g_p \in C$ such that $f | U_p = g_p | U_p$. Since $g_p : (M, \tau_c) \rightarrow \mathbb{R}$ is continuous, then $f : (M, \tau_c) \rightarrow \mathbb{R}$ is continuous at p. Since $p \in M$ is arbitrary, then $f : (M, \tau_c) \rightarrow \mathbb{R}$ is continuous. But this means that $f : (M, \tau_c) \rightarrow \mathbb{R}$ is continuous for any $f \in C_M$. Since τ_{C_M} is the weakest topology on M such that each $f \in C_M$ is continuous, then $\tau_{C_M} \subseteq \tau_c$. (5)

Conversely, suppose that $f \in C$. Since, by Lemma 3.1, we have $C \subseteq C_M$, then $f \in C_M$. Therefore $f:(M, \tau_{C_M}) \to \mathbb{R}$ is continuous for all $f \in C$. But τ_C is the weakest topology on M such that f is continuous for all $f \in C$. Consequently $\tau_C \subseteq \tau_{C_M}$. (6) From (5) and (6), we have $\tau_C = \tau_{C_M}$.

Theorem 4.3. Let $C = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions defined on a nonempty set M and consider M with the topology τ_c . Then $\tau_c = \tau_{scC} = \tau_{C_M} = \tau_{(scC)_M} = \tau_{scC_M}$.

Proof. From Theorem 4.1 we have $\tau_C = \tau_{scC}$ (7) And $\tau_{C_M} = \tau_{scC_M}$. (8) And by Theorem 4.2, we have $\tau_C = \tau_{C_M}$ (9) And $\tau_{scC} = \tau_{(scC)_M}$. (10) From (7), (8), (9) and (10), we have $\tau_C = \tau_{scC} = \tau_{C_M} = \tau_{(scC)_M} = \tau_{scC_M}$. **Theorem 4.4.** Let $C_0 = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions defined on a nonempty set M. If $C = (scC_0)_{(M,\tau_{C_0})}$ with respect to the topology τ_{C_0} , then $C_{(M,\tau_C)} \subseteq C$ and C is closed with respect to Localization. **Proof.** Let $f \in C_{(M,\tau_c)}$. That is, for each $p \in M$, there exist a neighborhood $U_p \in \tau_c$ of p with $p \in U_p \in \tau_c$ and a function $g_p \in C$ such that $f | U_p = g_p | U_p$. (11)Since $g_p \in C = (scC_0)_{(M,\tau_{C_0})}$, then there exist a neighborhood $V_p \in \tau_{C_0}$ of p and а function $h_p \in scC_0$ with $g_p | V_p = h_p | V_p$. (12)Since $h_p \in scC_0$, then $h_p = \omega \circ (f_1^*, f_2^*, ..., f_n^*)$ (13)for some finite sequence $f_1^*, f_2^*, ..., f_n^* \in C_0$, and some $\omega \in C^{\infty}$ (\mathbb{R}^n, \mathbb{R}). From (11), (12) and (13), we have $f | U_p \cap V_p = \omega \circ (f_1^*, f_2^*, ..., f_n^*) | U_p \cap V_p$ Since $\tau_{c_0} = \tau_c$, then $U_p \cap V_p \in \tau_{c_0}$ is an open neighborhood of p. This implies that $f \in (scC_0)_{(M,\tau_{c_0})} = C$. Hence $C_{(M,\tau_c)} \subseteq C$. By Lemma 3.2, C is closed with respect to Localization.

Theorem 4.5. Let $C_0 = \{f_1, f_2, f_3, ..., f_n, n \in N\}$ be a set of real-valued functions on a nonempty set M and consider M with the topology τ_{c_0} . Then the set of all local scC_0 functions on M, $C = (scC_0)_M$, is closed with respect to composition with smooth functions, i.e., scC = C.

Proof. Let us observe that $\tau_{c_0} = \tau_{scC_0} = \tau_c$. Let $f \in scC$. We want to show that $f \in C$. Since $f \in scC$, then there exist $f_1, f_2, ..., f_n \in C$ and $\omega \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ such that $f = \omega \circ (f_1^*, f_2^*, ..., f_n^*)$. (14)Since $f_1^*, f_2^*, ..., f_n^* \in C = (scC_0)_M$, then for each $p \in M$ there exist neighborhoods $U_1, U_2, ..., U_n$ of pfunctions $g_1, g_2, ..., g_n \in scC_0$ and such that $f_1 | U_1 = g_1 | U_1, ..., f_n | U_n = g_n | U_n$. Let $U_p = U_1 \cap U_2 \cap ... \cap U_n$. Then $f_1 | U_p = g_1 | U_p, ..., f_n | U_p = g_n | U_p$ (15)Since $g_1, g_2, \dots, g_n \in scC_0$, then $\left.\begin{array}{c}g_{1}=\omega_{1}\circ\left(g_{1}^{1},...,g_{1}^{k_{1}}\right)\\\vdots\\g_{n}=\omega_{n}\circ\left(g_{n}^{1},...,g_{n}^{k_{n}}\right)\end{array}\right\}$

(16)

for some $\omega_1 \in C^{\infty}(\mathbb{R}^{k_1}, \mathbb{R}), \dots, \omega_n \in C^{\infty}(\mathbb{R}^{k_n}, \mathbb{R})$ and $g_1^1, \dots, g_1^{k_1}, \dots, g_n^1, \dots, g_n^{k_n} \in C_0$. From (14), (15) and (16), it follows that $f | U_p = \omega \circ (\omega_1 \circ (g_1^1, \dots, g_1^{k_1}), \dots, \omega_n \circ (g_n^1, \dots, g_n^{k_n})) | U_p$. Thus $f | U_p = \omega \circ (\theta_1, \theta_2, \dots, \theta_n) \circ (g_1^1, \dots, g_1^{k_1}, \dots, g_n^1, \dots, g_n^{k_n}) | U_p$ where $\theta_1, \theta_2, \dots, \theta_n$ are functions in $C^{\infty}(\mathbb{R}^{k_1+\dots+k_n}, \mathbb{R})$ defined by

$$\theta_1 \left(x_1^1, ..., x_1^{k_1}, ..., x_n^1, ..., x_n^{k_n} \right) = \omega_1 \left(x_1^1, ..., x_1^{k_1} \right)$$

$$\vdots$$

$$\theta_n \left(x_1^1, ..., x_1^{k_1}, ..., x_n^1, ..., x_n^{k_n} \right) = \omega_n \left(x_n^1, ..., x_n^{k_n} \right).$$

Let $g_p = \omega \circ (\theta_1, ..., \theta_n) \circ (g_1^1, ..., g_n^{k_1}, ..., g_n^{k_n})$. Then, for each $p \in M$, there exist a neighborhood U_p of p and a function $g_p \in scC_0$ such that $f | U_p = g_p | U_p$. Consequently $f \in (scC_0)_M = C$. This is true for all $f \in scC$. Hence $scC \subseteq C$. This completes the proof.

References

[1] R. Brown, *Elements of Modern Topology* (Mcgraw-Hill Book Company, New York 1968).

[2] T. Bulati, Y. EL-Edresi, E. Ousta, "Initial differential spaces," *Proceedings of the First Conference of Mathematical Sciences, Zerqa Private University, Jordan, (2006),* 217–222.

[3] J. Gruszczak, M. Heller, P. Multarzynski, " A generalization of manifolds as spacetime models," *J. Math. Phys., 29 (1988), 2576–2580.*

[4] M. Heller, P. Multarzynski, W. Sasin, Z. Zekanowski, "On some generalizations of the manifold concept," *Acta Cosmologica–Fasciculus, 18 (1992), 31–44.*

[5] M. Heller, W. Sasin, "The structure of the b-completion of space-time," *General Relativity and Gravitation, 26 (1994), 797–811.*

[6] M. Heller, W. Sasin, "Structured spaces and their application to relativistic physics," *J. Math. Phys.*, *36 (7) (1995).*

[7] I. N. Herstein, *Topics in Algebra* ((2nd ed.). Lexington, Mass. : Xerox College Publishing, 1975).

[8] P. Multarzynski, W. Sasin, "Algebraic characterization of the dimension of differential spaces," *Rened. Circ. Mat. Parbrmo (2) Suppl. (1990), 193–199.*

[9] B. O'Neill, *Elementary Differential Geometry* (New York, N. Y. : A Cademic Press, 1966).

[10] W. Sasin, Z. Zekanowski, " On some sheaves over a differential space," *Arch. Math. 4, Scripta Fac. Sci. Nat. Ujep Brunensis, 18 (1982), 193–199.*

[11] W. Sasin, "Differential spaces and singularities in differential space-times," *Demonstratio Math.*, 24(1991), 601–634.

[12] R. Sikorski, "Differential modules," Colloquium Mathematical, 24 (1971), 45-79.

[13] W. Waliszewski, " On a coregular division of a differential space by an equivalence relation," *Colloquium Mathematicum, 26(1972), 281–291.*

[14] W. Waliszewski, "Regular and coregular mappings of differential spaces," *Ann. Polon. Math., 30 (1975), 263–281.*