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Abstract
In [2] the local function on a nonempty set M and the composition with Euclidean smooth functions are defined for

collection of functions C, which is an abstract generalization of the collection of C functions on the Euclidean

space [12]. This paper provides local functions and composition with Euclidean smooth functions for a countable

C={f,f,, f,... f,,neN

set of functions voon? } Important theorems and examples concerning local functions and
composition with Euclidean smooth functions are given.
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Introduction
Throughout this paper, let Cz{fl’ [ESR ST P N} be a set of real-valued functions
defined on a nonempty set M. A real function ‘M = R, defined on a topological

space (M’T) is said to be a local C—function on M if, for any P€ M , there exist a

neighborhood Ue€z of P and a function 9 cC={f, f, f fneN gioh that
flu=glU (2.
The set SCC is defined by setting | €5CC if and only if there exist | % Tz fo €C

neN, and a function ®: R" = R of class C” such that
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In other words[4]:
seC= (@[l 6 £ 1 6 1) €CoweC” R Ry neN},

The paper is organized as follows. In Section 2, we present the basic definitions. This
includes concepts in topology and analysis and some of theorems and examples are
given. Section 3, provides the concept of local functions and some of theorems and
examples concerning local functions are proved. Finally in Section 4, we studies the

2. Basic Definitions

Definition 2.1. [1] Let HESTLA be a collection of topological spaces and let

C:{fl' f2) Tanees fn’nEN} be a collection of functions fi:X_)Xﬂ, where X is an

t, A=12,...,nneN

arbitrary nonempty se . A topology on X, denoted by ‘c, is initial

C={f,f, f,...f,neN

with respect to 3 Ino } if it has the following property: for any

topological space Y, a function g:(Y’T)_)(X’Tc)

(Y.7)>(X;.7,)

is continuous if and only if the

h A=12,..nneN )

composite fio9: is continuous for eac

We have the following theorem

Theorem 2.1. [1] Let c be the initial topology on a nonempty set X with respect to
C={f,f, f...f,neN} |+ -

310y 1y

is any topology on X such that each

(X, 7)=>(X,,7,) TcCT

is continuous, then Tc is weaker than7, i.e.,

Proof. Let L (Xr) > (Xoze) be the identity  function.  Since

f,="1,0l,:(X17)>(X,,7,) h A=12..nneN

is continuous for eac ,  then

Iy :(X,r)—)(X,rc)

-1
|

is continuous. Consequently if Y €7 then lx U)=Uer, Hence

fec? n

Example 2.1. The usual topology on R" is the initial with respect to the projections

i R" >R, where 7, (%4, X1 %)= X0 A=123,..,1 ) So a function
9 :(91’92""’9”):Y ~R", where Y is a topological space, is continuous if and only if

7,°9=9::Y >R is continuous.
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Lemma 2.1. Let C,={f, f, fae funeNLC, ={9,,0,, 05, 9, N e N} be two sets of

real-valued functions on a nonempty set M . If €1 =C; | then %o S,

Proof. A subbase of ‘¢ is A= {fﬁl(U)3 FeCU openin R}, a subbase of “c: is
182 = {f_l(U)Z f ECZ,U open in |R}
— {ffl(U): feChU open in R}U

{f*l(U):f eC,-C,U open in R}

= B U{f_l(U)3 FeC,~CLU open in R}. Since
PSP, then fc. S%c.. n
Definition 2.2. [9] Let G be an open subset of R". A function TG = R" is called
infinitely differentiable, or of class C* provided all partial derivatives of f , of all orders,
exist and are continuous on G.
Let COO(G, IRk) denotes the set of all functions TG —=> R of class C”. Or more
generally (see, for instance, [9]).
Definition 2.3. Let G be an open subset of R", let I be a positive integer. A function
f:G— R is said to be of class C" if all its partial derivatives up to the order I exist
and are continuous on G. The set of all C" functions TG = R is denoted by
C'(G,R"). Thus f €C”(G,R") if and only if fe C(G,R")for =012, .. where
c’ (G, IRk) is the set of all continuous functions on G with values in R *.
3. Local Functions

i fyo fan NN} 5 gt

Let (M,7) be a topological space with a topology 7, and C={
of real-valued functions defined on M . As in [3, 4, 6, 8, 12 and 14], local functions are
defined as following :

Definition 3.1. A real function fiM - R, defined on a topological space (M’T) is
PEM there exist a neighborhood U €7

flu=glU

said to be a local C —function on M if, for any

of P and a function 9 eC={f, f, fs.. fneN} such that . The set of all
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local C —functions on M will be denoted by Com ) or, simply, Cw . Another way to define
a local C —function is the following [12]:

A function | defined on a topological space M is a local C—function provided there
exists an open covering U of the space M | such that for every set U €U there exists
a function 9u €C=1f. f,, fo fneN} g FlU =0y U

The following lemma is stated without proof in [12].

Lemma 3.1. Let Cz{fl’ fo) fanees fn'nEN} be a set of real-valued functions over a

f€C is alocal C—functionon M ,i.e., C<Cu.

flU=g|U

topological space (M’T). Then every

Proof. Let f €C . Let PEM Take 9=F and U=M _then
f€Cyu . Hence C<Cu.

. It follows that

The following definition is given in [20] and adopted by [3, 4, 11 and 14].

C={f, f,, f5... f,neN} on a topological

Definition 3.2. A set of real-valued functions
space M s said to be closed with respect to localization if C=Cyv. 7o prove that
C=Cu, itis enough to show that CwcC,

Lemma 3.2. Let C={fy, fy, fy fneN] be a set of real-valued functions over a
topological space (M’T). Then C is closed with respect to localization if and only if
CycC.

Proof. If C is closed with respect to localization, i.e., C=Cy , then CuwcC,
Conversely, if Cu QC, then by Lemma 3.1 we have CcCy . Therefore C :CM, so C
is closed with respect to localization. m

Theorem 3.1. Let C:{fl’ [FTRETR fn’nEN} be a set of real-valued functions on a
topological space M . Then (Co =Cu

Proof. Let D=Cwu . Then we want to show that Pu =D By Lemma 3.2, it is enough to

show that Dm =D Now, if fe DM, then for each PEM there exist a neighborhood
Uez of P and a function 96D such that 1Y =9IV since 9eD=Cy  then there

exist a neighborhood V of P and a function heC with 9 V= h|V. Since W=UNV

f|W =h|w

is a neighborhood of pEM, heC, and , then feCy=D. Hence
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Dy €D. Therefore Pu = D, by Definition 3.2, we have D=Cy is closed with respect to
localization. m

Example 3.1. Let C:{fl’ [T EvE fn’nEN} be the set of all continuous real-valued
functions on a topological space M. Then C is closed with respect to localization,
i.e., Cuw=C,

Proof. Let T €Cu. Then there exists an open cover U of M such that for each U € i

there exists a function 9u €C  with flu=g,[V . Now, let V be an open set in R.
Then
1)=MN/Y)

=yunse)

=UUNg @)

f

which is open, because 90 is continuous and U is open. Then ' is continuous. Hence

f EC. So Cu QC, by Lemma 3.2, C is closed with respect to localization. m
The following lemma is in order.
Lemma 3.3. Let C Z{fl' f20 oy T € N} be a set of real-valued functions on a

nonempty set M | Let 71 and %2 be two topologies on M | If 1 & 72 then

Cime) ECuiey

Proof. Let | €Cm.). Then for each P €M , there exist a neighborhood Us €% and a

function 9€C such that f‘Ung‘Up. Since “1&72, then U, e and fec(“"’fz).

Consequently Cowe) S Cmry), n

Lemma 3.4. Let Cz{fl’ f0 fornes fn’nEN} and D:{gl’92’93""'gn'ne N} be two sets of

real-valued functions on a nonempty set M and let 7 be a topology on M . If Cch,

then Cw = Dw
Proof. Let f €Cu. Then for each PEM , there exist a neighborhood Uy ez and a
function 9€C such that f‘UP =g‘Up . Since C<D, then 9€D, Hence f<Dw.

Thus Cv EDv. =
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Lemma 3.5. Let C :{fl’ fy fo frin e N} and D:{gl'92’93""’ 9. N€E N} be two sets of

real-valued functions on a set M and let %1, %2 be two topologies on M . If CcD and

5C7 then Cta) S By,

Proof. From Lemma 3.4, we have Come) S D(M'TO. (1)
By Lemma 3.3, we have D) = D(vaz), (2)
From (1) and (2), we have Coma) S D(vaz), -

4. Composition with Euclidean Smooth Functions.
Let © z{fl’ FTRETR AL N} be a set of real-valued functions defined on a nonempty
set M. As in [8, 11 and 14], the set SCC is defined by setting | €SCC if and only if

there exist LIETR PR # EC, NeN, and a function @: R" = R of class C” such that

f =a)0(fl*, f2**""’ fn*)

In other words [4, 5, 6, 10, 11 and 14]:

scC = 1 @o(f By o £7) 17,6, .7 €C, 0 eC” R'.R), "N},

Lemma 4.1. Let c Z{fl’ [FTR EVE P N} be a set of real-valued functions defined on
a nonempty set M . Then C<scC |

Proof. Let f €C and let 'R R be the identity function. Since /i€ COO([R, R), then

Lot e5CC ginge T=L°T then f€SCC Hence CcscC. g

Corollary 4.1. Let Cz{fl’ [FTR T fn’nEN} be a set of real-valued functions on a
nonempty set M . Then SCC=C if and only if SCC<C

Proof. If SCC=C then SCC=C  Conversely, if SCC<=C  then by the preceding lemma
we have C<SCC . Consequently SCC=C, g

The following definition is given in [4, 11, 12 and 14].

Definition 4.1. Let © ={fy, f, £ fone N be a set of real-valued functions over a
nonempty set M . If SCC=C  then C is said to be closed with respect to composition
with Euclidean smooth functions.

Lemma 4.2. Let €'C: be two sets of real-valued functions on a nonempty set M | If
C.<=C, then ScC, = scC,
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Proof. Let T €SCC., Then f =wo(fy, Ty fy) for some v fzre Ty ecl, neN, and

some COGC@([R”, R). Since C.cC, then Twfonf€C gng fescC, . Hence

scC,cscC, g

Example 4.1. Let C:{fl’ (TR Eve fn’nEN} be the set of all continuous real-valued
functions on a topological space M . Then SCC<C .

proof. Let f€SCC  Then there exist ™ feT€C  neN, and a function

a)eCm(R”’ R) such that f:a’o(fl’ Foemn fn). Then f is continuous because @ is
continuous, (fl’ Foree fn) is a continuous function and the composition of two continuous
functions is a continuous function. This means that f €C . Hence SCC<C. g

Theorem 4.1. Let Co :{fl’ fo far frin € N} be a set of real-valued functions defined
C

on a nonempty set M . Then the initial topology with respect to ~° and scCq coincide,
i.e., "G~ Fscy,
proof. Let feC, By Lemma 4.1, Co=5¢Co  Then f€5¢Co gng | :(M’Tscco)_) R

is continuous for each fe CO. But ‘< is the weakest topology such that each feCy is

continuous. Hence 7 & Tsc, | (3)

On the other hand, let g ESCCO. Then 9 :wo(f (R PR ) for some fiofy o, £ €Cy

where NeN and some GJEC@(IR", R). Since the topology of R" is the initial with
respect to the projections %i ‘R" = R, where i (%1500 Xy ) = X, and

7o (68 e £ )= (Mo ) > i continuous, then (£ 8, s £,7): (M2 ) >

R" is continuous. So the composition g:wo(fl’fz oo Ty ):(M’Tco)_) R of two

continuous functions is continuous. Hence g'(M’TCo)_) R is continuous for all

gestC;y Byt %<t is the weakest topology on M such that each 9€5¢Co js
continuous. It follows that ‘s < ¢, 4)
From (3) and (4), we have fop Tlacy, g

In general, by Lemma 3.1, CcCu nevertheless the following theorem says that

Te =T¢,

536



Theorem 4.2. Let C= {fl’ fos T frun e N} be a set of real-valued functions defined on

Te = e, , Where Cu is the set of all local C—functions with

a nonempty set M . Then
respect to the topology ‘c on M .

Proof. Let f €Cu . Then for each PEM , there exist a neighborhood U, ez of P and

a function 9,€C such that f‘Up - gp‘up . Since 9» :(M’TC)_) R is continuous, then
f:(M,zc)— R is continuous at P. Since PE€M s arbitrary, then | (M, 7c) - R is

f:(M,z.)

continuous. But this means that — R is continuous for any feCy . Since

feu is the weakest topology on M such that each feCy is continuous, then

Fou ST 5)

Conversely, suppose that feC, Since, by Lemma 3.1, we have CcCy , then feC,
. Therefore f :(M’TCM )_) R is continuous for all FeC But c is the weakest topology
on M such that | is continuous for all f €€, Consequently ‘¢ < feu (6)
From (5) and (6), we have ‘©~"c. m

Theorem 4.3. Let C = i fo0 fore frn e Nj be a set of real-valued functions defined on

a nonempty set M and considler M with the topology ‘c. Then

Tc = Tec = z-CM = z-(scC)M = TSCCM .

Proof. From Theorem 4.1 we have ‘c = fsc (7)
And Feu T Tseu (8)

And by Theorem 4.2, we have ‘¢ ~ “cu 9)
And “sc T TG (10)

From (7), (8), (9) and (10), we have

Tc =% =Tcy “Usc)y ~PscCy ., m

Theorem 4.4. Let Co :{fl’ fo fav foin € N} be a set of real-valued functions defined

C =(scCy)

on a nonempty set M. If Mo, with respect to the topology e, | then

Cme) €€ and C is closed with respect to Localization.
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feC h PEM  ihere exist a neighborhood Yr €7c of

f‘Up:gp‘Up. (11)

Proof. Let M), That is, for eac

C

P with P EUD €7%c and a function 9 € such that

C =(scC

Since 9o € (sc 0)(M’fco), then there exist a neighborhood Ve €7, of P and a
function " €5Co with gp‘vp :hp‘vp. (12)

since M0 €5Co then Mo =@ o (1 £/ 1) (13)

for some finite sequence 1+ 2+ f2 €Co and some @eC”"R", R). From (11), (12)

FU,NV, =wo( 11, £)JU, NV,

and (13), we have

Since ‘% ~fc, then U, NV, ez, is an open neighborhood of P. This implies that

f e (ScCy)y , =C Cluny =€

. Hence . By Lemma 3.2, C is closed with respect to

Localization. m
Theorem 4.5. Let Coz{fl’ fo) farees fn’nEN} be a set of real-valued functions on a

nonempty set M and consider M with the topology “C:. Then the set of all local scCo _

scC,)

functions on M | C=( M, is closed with respect to composition with smooth

functions, i.e., scCC=C,

Proof. Let us observe that o = “sc, ~ 7c | et [ €SCC

f,,f, f, €C

We want to show that | €C. Since f €S5¢C then there exist n and
0eC"R", Ry such that [ =@ °( " £ f)) (14)
Since T2y eC=(scC0)M, then for each PEM  there exist neighborhoods

UpU,,., U, of p and functions 911021+ G0 € 5CCq such that

f, |U1 :gl|Ul""' fn|Un =gn|Un . Let Up =U,NU, ﬂ...ﬂUn. Then

U, =0,|Up f|U, =g,|U, (15)
Since 91,92+ Gy ESCCO, then

glza)lo(gllv“’ 1kl)

gn:a)nO(gi,...,gsn) (16)
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ki

for some a)leCw (lel, R), e a)nECOO(IRkn, R) and gi,..., 1 ,...,gi,...,g:" ECo. From
_ oot K o gt K,

(14), (15) and (16), it folows that T|Ys=@=(@c(giingl)oro(ghgr U,

Thus f‘Up:a)o(é?l,é?z...,Hn)o(gf,..., flgﬁg,'j)

in C*(R"""*, R) defined by

6,,0,,...,.0

U .
P where n are functions

Let gpzwO(Hl""’en)o(gi"“'glkl""'gi""’g:n). Then, for each P€M

f\up=gp\u

, there exist a

g, €:scC,

neighborhood Uy of P and a function such that P* Consequently

f €(scCo)w =C  This is true for all T €5¢C . Hence SCC=C . This completes the proof.
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