

 ولٍذ للعلىم الإًساًٍة والتطبٍقٍةهجلة جاهعة بًٌ

Bani Waleed University Journal of Humanities and

 Applied Sciences

 لٍبٍا –جاهعة بًٌ ولٍذ –تصذر عي
exbwu.com/index.php/bwjhas/ind-https://jhas:Website

ISSN3005-3900 (002 -012الصفحات) 0202الوجلذ العاشر ـــ العذد الرابع ـــ

213

Security Metrics for Assessing Security Risks of Software in Agile

Development Methods

Ala A. Abdulrazeg
1*, Salim A. Adrees

2
, Faitouri. A. Aboaoja

3

1.2
 Computer Engineering Department, Faculty of Engineering, Omar Al-Mukhtar University, El-Beida, Libya.

2
 Computer Science Department, Faculty of Science, University of Derna, Derna, Libya.

 ala.ali@omu.edu.ly

 التطىٌر الرشٍقة هقاٌٍس الأهاى لتقٍٍن هخاطر البرهجٍات فً هٌهجٍات

علاء على عبذالرازق
1

*،

سالن على عبذالرازق
0

فٍتىريالفٍتىري عىض ،
2

0.1
 . لَبَا ،البَضاء ،خاهعت عوش الوخخاس ،كلَت الهٌذصت ،لضن هٌذصت الحاصوب

2
 .لَبَا، دسًت، خاهعت دسًت، كلَت العلوم، الحاصوب لضن

 0902-09-20تاريخ النشر: 0902-09-13تاريخ القبول: 0902-90-06تاريخ الاستلام:
 :الولخص

أصبحج هٌهدَاث حطوٍش البشهدَاث الششَمت هي الشكائز الأصاصَت فٌ حطوٍش البشهدَاث الحذٍثت، حَث حثوفش الوشةًثت ةالخضثلَن

دهح هواسصاث الأهثي مثوي صثَش عوثه هثزٍ الوٌهدَثاث أهثش هثال الأهوَثت ةٍعُذّ الضشٍع الزً ٍشكز علي احخَاخاث الوضخخذهَي.

لبٌاء أًظوت لوٍت ةهوثولت. ةهع رلك، فئى الاعخواد علي الوواسصاث الأهٌَثت ةحثذها لا ٍثوفّش س ٍثت ةامثحت ةكاهلثت لحالثت الأهثاى

س ةلاهلثت للخٌفَثز حوهٌهثا هثي الخمَثَن الوضثخوش إلي هؤشثشاث أهٌَثت لاهلثت للمَثاالأخاٍه الفعلَت للخطبَك. لضذ هزٍ الفدوة، ححخاج فشق

ل فثٌ ثه َثاب هثزٍ الوؤشثشاث. حمثذم هثزٍ الوسلثت مثويةححضَي هواسصاث دهثح الأهثي عولَثت الخطثوٍش، ةهثو أهثش ٍبمثي ححثذٍا

ه ةأثٌثاء صُووج لخمََن فعالَت الأًشطت الأهٌَت عبش الوشاحه الشئَضَت لضثَش عوثه أخاٍثهب لبث هدووعت هٌظوت هي الوماٍَش الأهٌَت

ًوثارج الخهذٍثذ، هعثاٍَش المبثوم الأهٌثٌ، شوولَتةهعذ كه دةسة حطوٍش. حشكز الوماٍَش الومخشحت علي العٌاصش الماهلت للمَاس هثه

وواسصاث البشهدت اُهٌت، ًخائح الاخخباساث الأهٌَت، ةإداسة الثغشاث هعذ اًخهثاء الثذةسة. حهثذذ هثزٍ الومثاٍَش إلثي حمَثَن ه الالخزام

 .ة الفشق علي حمذٍن هشهدَاث آهٌت هع الحفا علي الوشةًت فٌ العوههذى لذس

 .إداسة الثغشاث ,هماٍَش الأهي ,الأًشطت الأهٌَت ,حطوٍش البشهدَاث الششَمت الكلوات الذالة:

Abstract

Agile methodologies have become key players in modern software development, offering flexibility,

rapid and customer-focused delivery. Integrating security practices into Agile workflows is critical for

building resilient and trustworthy systems. However, security practices alone provide limited visibility

into an application’s actual security posture. To address this gap, Agile teams require quantifiable,

actionable security metrics that enable continuous assessment and improvement of security integration

throughout the development process, a task that remains challenging due to the lack of such measures.

This paper proposes a set of security metrics designed to evaluate the effectiveness of security

activities across key Agile phases: before, during, and after each iteration. The proposed metrics focus

on measurable artefacts such as threat model coverage, security acceptance criteria, secure coding

adherence, security testing results, and post-iteration vulnerability management. These measures aim

to assess how effectively teams deliver secure software while maintaining agility.

Keywords: Agile Software Development, Security Activities, Security Metrics, Vulnerability

Management.

214

Introduction:
Agile software development has become widely adopted due to its flexibility, iterative progress, and

responsiveness to changing requirements. By emphasizing collaborative workflows, rapid delivery, and

continuous feedback, agile methodologies enable development teams to produce high-quality software

that aligns closely with customer needs and market demands (Sinha & Das, 2021). As software

increasingly supports critical business functions, ensuring its security has become a top priority. With

most business applications now accessible online, the number of security attacks exploiting software

vulnerabilities has significantly risen. These attacks have led to substantial losses of personal and financial

data, impacting both individuals and organizations (Thool & Brown, 2024). The growing frequency and

diversity of cyber-attacks highlight the critical importance of integrating security practices within Agile

workflows to mitigate vulnerabilities at early stages (Rindell et al., 2021; Thool & Brown, 2024). Such

integration not only helps prevent costly breaches but also preserves user trust in rapidly evolving

software products.

Even when secure software development practices are correctly followed from the very beginning, the

development team may still lack a clear understanding of the actual security level achieved. This

uncertainty can lead to challenges such as those outlined by Vacca (2012):

 How much more do I need to spend to be “safe” from attack?

 Will the changes made to my software to improve security be effective?

 Are my company’s workflows or processes sufficiently secure?

To address the above security questions and assess the security state of a system, it is essential to measure

it (Abdulrazeg et al., 2012). Security cannot be improved without measurement. To measure security,

security metrics is needed (Wagner & Ford, 2020). Security metrics can be regarded as an integral

component of both software development and software assurance, to assess whether the software achieves

its intended objectives. Well-defined security metrics can serve as an effective tool for the development

team to assess the effectiveness of various artefacts, deliverables and documents that are produced during

the development lifecycle (Sherif et al., 2024).

Therefore, to effectively strengthen security in Agile environments, development teams should be

equipped with a security metrics to monitor and track the implementation of security practices, as well as

to assess whether team members possess the necessary security knowledge and training (Ojuri,

2024).Without clear and objective measures, it becomes difficult to evaluate the security posture or

identify gaps that may lead to risks (Sherif et al., 2024).

In this paper, we propose a set of security metrics to evaluate the effectiveness of integrated security

practices across the key phases of the Agile workflow: before, during, and after each iteration. The

proposed security metrics focus on measurable artefacts such as threat model coverage, security

acceptance criteria, secure coding compliance, security testing outcomes, and post-iteration vulnerability

management. The metrics supports decision-making, promotes early risk identification, facilitates secure

coding and testing practices, and encourages continuous learning from retrospective analyses. By

quantitatively assessing these metrics, development teams can gain actionable insights into their security

posture and iteratively improve security integration throughout the development life cycle. This work

addresses the absence of phase-specific security metrics in Agile workflows, and we believe our

contribution represents a step toward enabling teams to deliver more secure software without

compromising agility.

The rest of this paper is organized as follows: section 2 gives an overview of Agile methodologies.

Section 3 reviews security practices in Agile software development. Section 4 discusses related works in

the field of security metrics. In section 5, we present the proposed security metrics. Section 6 describes

how to integrate the proposed security metrics into a secure Agile development process, while section 7

concludes the paper and outlines future research.

1. Agile methodologies

Agile methodologies have become an increasingly popular software engineering (SE) process over the last

decade and widely adopted by software development teams (Nagele et al., 2022). These methods put

emphasis on flexible, iterative, and customer-centric processes. Previous research has suggested that Agile

215

methods enhance team productivity and product quality, foster communication and promote knowledge

sharing (Thool & Brown, 2024). Numerous SE processes apply Agile methodologies, including Scrum,

Extreme Programming (XP), Kanban, Feature-Driven Development (FDD), and Dynamic Systems

Development Method (DSDM) (Thool & Brown, 2024). While each method has its own principles, life

cycle, and roles, all agile methods build the software in iterative process (Al-Saqqa et al., 2020). While

Scrum employs fixed-length time-boxed iterations called sprints, other models refer to their development

cycles more generally as iterations. Despite differences, these models can all be viewed through the lens

of iteration phases, which can be effectively structured into three distinct phases:

 Before-iteration (Planning and Preparation)

This phase focuses on clarifying requirements that are expressed as user stories and features, defining

acceptance criteria for each item, prioritizing backlog items based on business value, cost, or risk.

Capacity and effort estimation is required for each prioritized item. Setting iteration goals provides clarity

on what is expected during the iteration, making it easier for team members to communicate and

collaborate effectively.

 During-iteration (Execution and Progress Tracking)

This phase focuses on the execution period where the team develops, tests, and delivers working software

based on planned user stories and features. Key activities include coding using best practices such as test-

driven development, continuous testing to maintain quality, and daily stand-ups for synchronization and

issue resolution. This iterative process ensures continuous delivery of functional software, with progress

tracked through visual tools like task boards or burndown charts.

 After-Iteration (Review, Feedback, and Retrospective)

This phase focuses on reviewing completed work with stakeholders, conducting acceptance testing to

verify that user stories meet defined criteria, and gathering feedback. The team conducts an iteration

retrospective to reflect on successes and challenges, identifying improvements for future iterations.

2. Security Practices in Agile Software Development

To be considered secure software that performs its intended functions correctly, the software must be free

from vulnerabilities. Improving security and achieving quality software requires the early integration of

security practices into the development lifecycle (Mohaddes et al., 2015; Abdulrazeg & Abdulrrzaiq,

2020). However, there is no standardized set of security practices that can be implemented in software

development projects (Vicente et al., 2019). Moreover, the project team usually has limited security

expertise and experience, along with a general lack of security awareness (Vicente et al., 2019). Despite

these challenges, the positive results of integrating security early in the development process include (1)

reduced security issues, (2) quicker defect rectification, (3) highlighting risks in the early phases of the

development process, and (4) reduced costs (Mohaddes et al., 2015).

In the literature, relevant studies have integrated security practices into agile methods to develop secure

agile software development models (Maier et al., 2017; Rindell et al., 2018; Vicente et al., 2019; Bezerra

et al., 2020; Moyon l et al., 2020).

Thool and Brown conducted a comprehensive review of existing literature on Securing Agile software

development and identified eight security practices as being particularly valuable in improving the

security of Agile software development processes (Thool & Brown, 2024). These security activities are;

 Addressing security in early iterations with requirements and testing before deploying the software.

 Incorporating security expectations in project requirements when describing the responsibilities and

behaviour of the software.

 Adding a security specialist such as a Security Master to the development team to focus on addressing

security concerns and ensuring system security.

 Increasing story points or weights to prioritize security-related tasks and encourage more secure

development and testing.

 Incorporating vulnerability and penetration testing such as Dynamic Application Security Testing

(DAST) to automatically detect security flaws in running software.

 Using static analysis tools such as Static Application Security Testing (SAST) to detect security

vulnerabilities by automatically scanning the source code.

 Performing risk analysis to identify vulnerabilities.

216

 Integrating secure coding practices into the deployment pipeline to enable automatic security checks

with code changes and address issues before deployment.

Ardo et al. identified security practices through interviews with agile practitioners aimed at securing the

Agile development process and reducing cybersecurity breaches (Ardo et al., 2022). These practices

include,

 Involve security specialist and penetration tester as integral members to the development team.

 Define evil user stories through threat modelling session and regularly reviewed them after each

iteration to better understand threat scenarios and malicious behaviours.

 Conduct brainstorming sessions to assess the feasibility and implementation of proposed security

features.

 Generate security test plans derived from the security backlog to ensure software meets defined

security features.

 Perform security regression tests to verify that recent code changes do not introduce new

vulnerabilities.

 Conduct a secure code review session to identify security vulnerabilities through manual inspection

and automated static analysis tools.

 Perform manual and automated penetration testing alongside secure code review sessions to identify

exploitable vulnerabilities beyond static analysis.

 Hold a Security Retrospective at sprint’s end to review what security practices worked well, uncover

gaps or failures, and decide on actionable improvements for upcoming development cycles

The preceding section emphasizes the importance of integrating security practices, such as threat

modelling, secure code reviews, penetration testing, and regression tests within Agile development

methods to improve security and deliver high-quality, vulnerability-free software. However, implementing

these activities alone does not always provide clear insight into how effectively security goals are met or

reveal existing gaps. The current focus largely overlooks the systematic use of security metrics to measure

and track security effectiveness. Therefore, security metrics play a crucial role in measuring effectiveness,

guiding risk-aware decisions, and enabling continuous security improvement throughout the Agile

lifecycle.

3. Related Works

Several studies have proposed the use of security metrics to evaluate software security during the

development life cycle. Sultan et al., (2008) proposed a set of metrics to monitor the security level of the

software throughout the entire development process, providing engineers with early feedback before

release. Savola et al. (2012) introduced a risk-driven methodology that guides agile teams in deriving

project-specific security metrics by linking high-level goals to questions and detailed measures through

agile risk analysis activities. Abdulrazeg et al. (2012) and Kundi and Chitchyan (2014) agreed that

measuring security by focusing on the misuse case model allows designers to detect and fix security

vulnerabilities early in the development process, preventing them from reaching the final product.

OWASP Software Assurance Maturity Model (SAMM) (OWASP, 2020) emphasizes the need to define

metrics with insight into the effectiveness and efficiency of the application security program. The model

identifies measurable indicators across three categories: effort (e.g., training hours, code review time,

number of apps scanned), results (e.g., unresolved security defects, security incidents), and environment

(e.g., number of applications, total lines of code). Wagner and Ford (2020) proposed metrics to support

Agile Software Development in regulated environments. The authors identified metrics to measure

performance of three regulatory attributes: software quality assurance (defect density, code coverage),

security (security test pass rate, code scanning, detection rate), and software effectiveness (earned business

value, tasks completed, tasks with errors). Caniglia et al. (2025) introduced FOBICS, a quantitative

metrics framework designed to measure the efficiency of using DevSecOps, considering both security and

business logic perspectives. The framework integrates security-related indicators such as Number of total

tests, Performance Security Index, Number of workers with a specific permission, Number of code

commits made before the first test is executed, Security Coverage Index and Training Security Index.

The review of existing literature shows that there is no widely accepted model for measuring security

within agile methodologies. In particular, little work has focused on developing security metrics that are

217

explicitly aligned with the different phases of agile methodologies. Therefore, this gap in knowledge is

what our study aims to fill.

4. Security Metrics for Agile Software Development

In this work, a security metrics are developed to be applied at the key phases of the Agile workflow:

before, during, and after each iteration, aiming to assess and detect software security risks. The objective

of the security metrics is to monitor and track the implementation of security practices and to assess

whether team members possess the necessary security knowledge and training. The importance of this

approach comes from the fact that assessing security risks early in the development life cycle can help the

team to implement efficient solutions before software delivery to customers (Thool & Brown, 2024).

Below are the proposed security metrics, grouped according to each phase of the agile iteration to ensure

continuous security vigilance. The proposed security metrics is developed based on the practices and

activities outlined in Thool and Brown (2024) , Ardo et al. (2022), and Ojuri (2024) .

 Before Iteration (Planning phase)

Metrics 1.1: The ratio of the number of team members completing relevant security training to the total

number of team members [RTMST].

This metric quantifies the number of team members who have completed relevant security training,

thereby reflecting the team's security readiness and the organization's commitment to security culture.

RTMST is crucial for ensuring that development teams possess up-to-date security knowledge, a

prerequisite for effectively embedding security into agile methodologies and mitigating potential

vulnerabilities. Consider a number of team members as TTM = (ttm1 ,…,ttmn) and the team member with

security training as TMST = (tmst1,…, tmstn) such that TTMTMST  . The metrics is defined as follows;

RTMST = TMST / TTM

The value of the metric range from [0 - 1], if RTMST converges to 1, it indicates all team members have

completed the relevant training and reflects strong security awareness. The lower RTMST value suggests

that many team members lack essential security knowledge. This situation poses potential security risks,

as untrained members may unintentionally introduce vulnerabilities or fail to adequately identify and

mitigate potential threats. The lower RTMST serves as an indicator for the management to prioritize

training initiatives aimed at equipping untrained members with security knowledge. Moreover, it is

imperative for management to systematically monitor training progress to ensure and foster a culture of

security awareness.

Metrics 1.2: The ratio of the number of user stories with threat models to the total number of user stories

in the backlog [RUSTM].

This metric measures the extent to which threat modelling is applied to user stories in the backlog during

backlog refinement. It reflects early integration of security analysis in agile development to ensure the

reduction of security vulnerabilities before coding begins. Consider a set of user stories in the backlog as

TUS = (tus1 ,…, tusn) and the user stories with threat models as USTM = (ustm1,…, ustmn) such that
TUSUSTM  . The metrics is defined as follows;

RUSTM = USTM / TUS

The value of the metric range from [0 - 1], if RUSTM converges to 1, it indicates strong early security

integration where most user stories have undergone threat modelling. This suggests proactive

identification and mitigation of security risks before development. The lower RUSTM value implies

limited or no threat modelling on backlog items, indicating reactive security posture. This increases risk of

undetected threats entering development, potentially causing costly fixes later. Therefore, to overcome the

lower RUSTM, introduce threat modelling criteria in definition of ready, involve security experts in

backlog refinement, and train teams on threat modelling.

Metrics 1.3: The ratio of the number of user stories with defined security acceptance criteria to the total

number of user stories in the backlog [RUSAC].

This metric quantifies the number of user stories in the backlog that incorporate clear and testable

security-related acceptance criteria that must be met for the user story to be considered complete. This

metric reflects how well security is integrated into agile planning artefacts, enabling early risk mitigation.

Consider a set of user stories in the backlog as TUS = (tus1 ,…, tusn) and the user stories with defined

218

security acceptance criteria as USAC = (usac1,…, usacn) such that TUSUSAC . The metrics is defined as

follows;

RUSAC = USAC / TUS

The value of the metric range from [0 - 1], if RUSAC converges to 1, it indicates security requirements are

well integrated into the backlog, ensuring that security considerations are explicitly part of the

development scope. The lower RUSAC value implies limited or no integration of security acceptance

criteria, increasing the risk of security gaps and vulnerabilities being introduced during development.

Therefore, to overcome the lower RUSAC, immediate focus is needed to embed security acceptance

criteria into backlog items and increase this ratio over time to improve security coverage. The security

acceptance criteria should be specific, relevant, measurable, and testable to be effective.

Metrics 1.4: The ratio of the number of security requirements aligned with security acceptance criteria of

the user stories to the total number of identified security requirements. [RSRAC].

The security requirements alignment ratio measures the extent to which identified security requirements

are explicitly linked and reflected in the security acceptance criteria of user stories. This metric evaluates

how well security requirements translate into actionable, testable acceptance criteria that guide

development and testing. Consider a number of security requirements as TSR = (tsr1 ,…,tsrn) and the

security requirements aligned with security acceptance criteria as SRAC = (srac1,…, sracn) such that
TSRSRAC . The metrics is defined as follows;

RSRAC = SRAC / TSR

The metric RSRAC ranges from [0 - 1]. A value approaching 1 indicates a strong alignment between

security requirements and acceptance criteria, ensuring that security requirements are effectively

translated into specific, testable conditions. This alignment facilitates robust implementation, verification,

and traceability, thereby reducing the likelihood of security gaps. Conversely, a lower RSRAC value

suggests that some or many security requirements lack associated acceptance criteria. Such misalignment

increases the risk that critical security requirements may be overlooked or insufficiently tested, potentially

resulting in insecure features or vulnerabilities in the final product. To mitigate these risks, it is essential

for cross-functional team including security experts, developers, and product owners to collaboratively

map each security requirement to one or more user stories with well-defined, measurable security

acceptance criteria. Ensuring this proper alignment guarantees that security requirements are not only

documented but also validated through security testing, significantly decreasing the probability of defects

and security vulnerabilities slipping into production.

Metrics 1.5: The ratio of the security acceptance criteria that are covered by security test cases to total

number of identified security acceptance criteria [RSATC].

This metric is applied to ensure that security test cases are developed for each security acceptance

criterion associated with user stories. By measuring RSATC, development teams can proactively validate

that security considerations are not only identified but also operationalized through executable tests,

enabling effective verification and decision-making about product acceptability from a security

perspective. Regular monitoring of this metric helps development teams identify and close gaps in security

testing coverage, thereby enhancing overall security quality. Consider a number of

identified security acceptance criteria as TAC = (tac1,…,tacn) and the

number of security acceptance criteria covered by security test cases as SATC = (satc1,…, satcn) such that
TACSATC . The metrics is defined as follows;

RSATC = SATC / TAC

The metric RSATC ranges from [0 - 1]. A value approaching 1 indicates nearly all security acceptance

criteria are covered by test cases, which reflects high level of security assurance. On the contrary, a lower

RSATC value suggests that some or many security acceptance criteria lack associated test cases. This

implies that certain security requirements remain unverified, signalling potential gaps in validation and

increasing the risk that security flaws may go undetected. The lack of test coverage undermines

confidence in the product’s security posture. Therefore, it is essential to apply shift-left testing principles

by incorporating security test case development early during backlog refinement.

Metrics 1.6: The ratio of the user stories with high exposure to security risks to total number of user

stories [RUSHR].

219

This metric measures the number of user stories that involve high exposure to security risks such as

handling sensitive data, performing authentication, or accessing critical system resources relative to the

total number of user stories in the backlog. Security acceptance criteria and story points assist the team in

identifying which user stories carry higher security exposure. This metric helps the team to anticipate

challenges and allocate efforts effectively. This supports better decision-making, improves user story

quality by encouraging clearer security acceptance criteria for high-risk stories, and contributes to

maintaining overall project health through proactive risk management.

Consider the number of user stories as TUS = (tus1,…, tusn) and a number of user stories with high

exposure to security risks as USHR = (ushr1 ,…,ushrn) such that TUSUSHR . The metrics is defined as

follows;

RUSHR = USHR / TUS

A higher RUSHR indicates the presence of complex, high-risk user stories, signalling the need for focused

attention on thorough definition, rigorous security acceptance criteria, and targeted risk mitigation efforts

to ensure quality and reduce ambiguity of the user stories and their security requirements. Conversely, a

lower RUSHR reflects a backlog centred on lower-risk stories, indicative of more stable project conditions

and potentially higher overall quality and predictability in delivery, thereby facilitating more effective

resource management.

 During Iteration (Development phase)

Metrics 2.1: The ratio of secure code commits that meet defined secure coding criteria to total number of

code commits during iteration [RSCSCi].

This metrics measures the ratio of code commits during an iteration that adhere to secure coding practices

verified by passing automated static analysis (SAST) validation tools, relative to the total number of

commits. RSCSC reflects the effectiveness of secure development practices at the implementation level. It

serves as an early indicator of potential security debt being introduced into codebase. Additionally,

RSCSC Supports continuous improvement by tracking and analysing secure coding compliance across

successive sprints (rscsc1 ,…,rscscn).

Consider a number of code commits during an iteration as TCC = (tcc1,…, tccn) and the number of secure

code commits introduced during that iteration as SCSC = (scsc1,…,scscn) such that TCCSCSC . The

RSCSC for a specific iteration i, is calculated as:

RSCSCi = SCSC / TCC

The ratio of secure code commits (RSCSC) metric ranges from 0 to 1. A value approaching 1 indicates a

strong adherence to secure coding practices, significantly reducing the likelihood of introducing

vulnerabilities during iteration’s development process. Conversely, a lower RSCSC value suggests that

many commits do not comply with secure coding standards, increasing the risk of security flaws in the

codebase. To mitigate this risk, it is essential to enforce clear secure coding guidelines and policies for

developers to follow. Additionally, providing regular training on secure coding practices and common

vulnerabilities is crucial to enhance developer skills and raise security awareness.

Metrics 2.2: The ratio of code changes that have been reviewed with security-focused during iteration,

relative to the total number of code changes made [RCRSFi].

This metric measures the number of code changes in an iteration that have undergone manual peer-review

with explicit attention to security considerations before being merged into the main codebase. Peer-

reviews are essential because they can identify subtle security issues that static or dynamic analysis tools

may overlook. This effectively complements automated testing efforts, thereby reducing overall

vulnerability density in the codebase.

Consider a number of code changes during an iteration as TCG = (tcg1,…,tcgn) and the number of code

changes with security-focused peer review as CRSF = (crsf1 ,…,crsfn) and such that TCGCRSF  . The

RCRSF for a specific iteration i, is calculated as:

RCRSFi =CRSF / TCG

The ratio of code review coverage (RCRSF) metric ranges from 0 to 1. A value approaching 1 indicates

nearly all code changes are reviewed with security in mind during an iteration. Conversely, a lower

RCRSF value suggests that many code changes are merged without proper security-oriented peer-review.

To address a low RCRSF value, it is essential to establish clear criteria defining what constitute a

220

thorough security-focused review, such as using standardized checklists and requiring explicit security

sign-offs. Security reviews should be integrated as a mandatory step within each iteration, ensuring that no

code is merged without explicit security review. Providing targeted training to the team enhances their

ability to effectively identify security issues during peer reviews.

Metric 2.3: The ratio of security-related defects identified during an iteration to the total number of story

points completed during that iteration [RSDSPi].

This metric measures the density of defects relative to the amount of work completed in an iteration i,

where work is estimated in story points. Since story points represent the relative effort and complexity of

user stories, this metric provides a normalized view of software quality by showing how many defects

occur per unit of delivered effort. RSDSP helps development teams evaluate their effectiveness in

managing complexity, testing, and defect prevention, while encouraging a balance between delivery speed

and quality. By tracking defect density over time, teams can identify trends in relation to their workload,

prioritize high-risk areas for additional testing or refactoring, and focus on continuous process

improvement.

Consider a number of story points completed in an iteration as TSP = (tsp1,…, tspn) and the number of

security-related defects detected through manual and automated security testing, and security peer review

during that iteration as SDSP = (sdsp1 ,…,sdspn). The RSDSP for a specific sprint i, is calculated as:

RSDSPi=SDSP / TSP

The value of the metric range from [0 - 1], if RSDSP converges to 0, it indicates that few security-related

defects are detected per story point, reflecting strong security practices and effective prevention of

vulnerabilities early in the development process. Conversely, a high RSDSP signals an increased density

of security defects relative to the amount of work delivered, indicating potential weaknesses in design,

coding, or testing. To overcome a high RSDSP ratio, teams should integrate security earlier in their

workflows. Additionally, on-going secure coding training enables team members to develop the skills

necessary to write secure code and avoid common security defects.

Metric 2.4: The ratio of security-test cases failed to the total number of security test cases executed

during an iteration [RSTCFi].

This metric determines the number of security test cases that detect implementation defects, measured as

the number of failed security test cases relative to the total number executed security-test cases (both

passed and failed) within an iteration. It serves as an indicator of the security robustness of the software

under test, reflecting the extent to which security vulnerabilities are exposed during testing. Consider a

number of security test cases executed during an iteration as TCE = (tce1,…, tce n) and the

number of security test cases failed during that iteration as STCF = (stcf1,…,stcfn), such that TCESTCF  .

The RSTCFi for a specific iteration i, is calculated as:

RSTCF i= STCF / TCE

The ratio of security test cases that fail ranges from [0 to 1]. A value approaching 0 indicates that most

security tests have successfully passed, reflecting strong security practices and less vulnerabilities detected

during an iteration. Conversely, a high RSTCF value signals that many security tests failed, highlighting

potential weaknesses in the code or security controls that require immediate attention. To address a high

RSTCF value, team should analyse the failed test cases to identify root causes and fix high-severity

vulnerabilities. Additionally, Improving test coverage, integrating security-focused code reviews, and

leveraging automated security testing can help prevent defects and gradually raise the pass ratio.

 After Iteration (Retrospective phase)

Metric 3.1: The ratio of defects that escape detection during an iteration to the total number of defects

found during and after an iteration [RDEDIi]

This metric measures the number of defects that are not detected during an iteration phase but are

subsequently detected either during the post-sprint phase or user acceptance testing (UAT), relative to the

total defects found during and after an iteration. This metric provides critical insight into the effectiveness

of in-iteration testing and quality assurance processes in identifying and fixing issues early thereby

helping to assess defect leakage and areas for process improvement.

221

Consider a number of defects found during and after iteration as TDF = (tdf1,…, tdf n) and the defects

escaped detection during an iteration as DEDI = (dedi1,…,dedin), such that TDFDEDI  . The metrics is

defined as follows,

RDEDIi =DEDI / TDF

A low defect escape ratio indicates effective testing and quality assurance process, where most defects

identified and resolved during iteration and before release. This suggests that current practices are robust,

and continuous improvement in automation and coverage should be maintained. Conversely, a high defect

escape ratio reveals that the defects are leaking through to users or production, signalling insufficient

security test coverage, inadequate automation, or weak security review practices.

Metric 3.2: The ratio of security-related improvement actions identified in the previous iteration

retrospective that have been implemented to the total security improvement actions documented [RSAIR].

This metric measures the number of security-related improvement actions identified in the previous

iteration retrospective that have been successfully implemented within the current iteration. It serves as a

critical indicator of the team’s commitment to continuous security improvement by acting upon lessons

learned to enhance process and product quality. Consider a number of security-related improvement

actions identified in retrospectives as TSI = (tsi1,…, tsi n) and the security-related improvement actions

implemented as SASR = (sasr1,…,sasrn), such that TSI SASR . The RSASRi for a specific iteration i, is

calculated as:

RSASRi =SASR / TSI

A higher RSASR demonstrates that the team effectively executes most of the security actions identified

during retrospectives. This reflects a culture of continuous learning, prioritization of security within the

development workflow, appropriate resource allocation, and strong leadership support. Conversely, a low

ratio suggests many identified issues remain unaddressed, indicating weaker commitment. To overcome a

low RSASR ratio, team should prioritize security actions in an iteration planning and add the most

important actions to the next iteration’s backlog so they are treated as actual work items.

5. Integrating Security Metrics into Secure Agile Process

Applying the proposed security metrics within a secure agile method offers a structured approach to

illustrating security measurement across the development cycles. To demonstrate the application of the

proposed security metrics, the model is integrated with the Secure Scrum process proposed by Maier et al.

(2017). Figure 1 shows the alignment of the security metrics model with the three key phases of the

Secure Scrum process: before, during, and after sprint. This integration demonstrates how security metrics

can be systematically incorporated into agile workflows to support continuous security improvement.

222

Figure 1: Integrating Security Metrics Model into Secure Scrum process proposed by Maier et al. (2017)

6. Conclusion and Future Work

This paper proposes a set of security metrics designed to evaluate software security risks within Agile

development methods, covering key phases: before, during, and after each iteration. The objective of these

metrics is to provide actionable insights that enable development teams to continuously assess and

improve security practices across the Agile process, thereby strengthening their overall security posture.

Quantitative indicators such as threat model coverage ratio, secure code commit compliance, and defect

leakage rates measure the effectiveness of security implementation. A high coverage ratio or low defect

leakage rate indicates successful adoption of secure practices, supporting the objectives of this study.

Additionally, the proposed metrics include indicators assessing the effectiveness of security training,

providing valuable insights into organizational attitudes and behaviors toward security awareness, which

is a critical factor influencing the overall security posture.

Beyond evaluating individual aspects of security, the proposed metrics support a continuous cycle of

measurement and improvement, showing how ongoing evaluation across Agile phases enhances software

security. For instance, security metrics that track failed security test cases and security-related defects

provide concrete evidence of system vulnerabilities. These findings are analyzed during the retrospective

phase to identify actionable improvements, which are then incorporated in subsequent iterations,

reinforcing security practices and sustaining the feedback loop.

Future work will involve conducting experiments of applying these metrics to a variety of software

projects to collect quantitative data and qualitative feedback. These experiments aim to evaluate and

demonstrate the usefulness and effectiveness of the proposed security metrics in supporting secure system

development.

Before-Sprint Security Metrics

1.1, 1.2, 1.3, 1.4, 1.5, 1.6

During-Sprint Security Metrics

2.1, 2.2, 2.3, 2.4

After-Sprint Security Metrics

3.1, 3.2

223

7. References

Abdulrazeg, A. A., & Abdulrrzaiq, S. A. (2020). A Hybrid SV-SCRUM Model: Integrating SCRUM in

SV-Model. Journal of Pure & Applied Sciences, 19(5), 90-95.

Abdulrazeg, A. A., Norwawi, N. M., & Basir, N. (2012, June). Security metrics to improve misuse case

model. In Proceedings Title: 2012 International Conference on Cyber Security, Cyber Warfare

and Digital Forensic (CyberSec) (pp. 94-99). IEEE.

Al-Saqqa, S., Sawalha, S., & AbdelNabi, H. (2020). Agile software development: Methodologies and

trends. International Journal of Interactive Mobile Technologies, 14(11).
Ardo, A. A., Bass, J. M., & Gaber, T. (2022, August). Towards secure agile software development

process: A practice-based model. In 2022 48th Euromicro Conference on Software Engineering

and Advanced Applications (SEAA) (pp. 149-156). IEEE.

Bezerra, C. M. M., Sampaio, S. C., & Marinho, M. L. (2020, August). Secure agile software development:

policies and practices for agile teams. In International Conference on the Quality of Information

and Communications Technology (pp. 343-357). Cham: Springer International Publishing.
Caniglia, A., Dentamaro, V., Galantucci, S., & Impedovo, D. (2025). FOBICS: Assessing project security

level through a metrics framework that evaluates DevSecOps performance. Information and

Software Technology, 178, 107605.

Kundi, M., & Chitchyan, R. (2014, August). Position on metrics for security in requirements engineering.

In 2014 IEEE 1st International Workshop on Requirements Engineering and Testing (RET) (pp.

29-31). IEEE.

Maier, P., Ma, Z., & Bloem, R. (2017, August). Towards a secure scrum process for agile web application

development. In Proceedings of the 12th International Conference on Availability, Reliability and

Security (pp. 1-8).

Fazzani, F. H. (2023). A Scrum Model as a Tool for Track Changing Requirements. Bani Waleed

University Journal of Humanities and Applied Sciences, 8(1), 798-811.

Mallouli, W., Cavalli, A. R., Bagnato, A., & De Oca, E. M. (2020, July). Metrics-driven DevSecOps.

In ICSOFT (pp. 228-233).

Mohaddes Deylami, H., Ardekani, I., Muniyandi, R. C., & Sarrafzadeh, H. (2015). Effects of software

security on software development life cycle and related security issues.
Moyon, F., Almeida, P., Riofrío, D., Mendez, D., & Kalinowski, M. (2020, August). Security compliance

in agile software development: A systematic mapping study. In 2020 46th Euromicro Conference

on Software Engineering and Advanced Applications (SEAA) (pp. 413-420). IEEE.
Nagele, S., Watzelt, J. P., & Matthes, F. (2022, June). Investigating the current state of security in large-

scale agile development. In International Conference on Agile Software Development (pp. 203-

219). Cham: Springer International Publishing.

Ojuri, M. A. (2024). Integrating Cybersecurity Standards into Software Quality Assurance Frameworks: A

Holistic Approach. Journal of Computer Science and Technology Studies, 6(1), 258-271.

OWASP (2020), “OWASP SAMM, version 2” available at https:// owaspsamm.org/model/. Accessed in

July 2025.

Mohamed, H. K., & Nabus, H. S. (2025). Developing a Software Agent to Access Drug-Related

Information from the Dark Web. Bani Waleed University Journal of Humanities and Applied

Sciences, 10(3), 415-435.

 Rindell, K., Hyrynsalmi, S., & Leppänen, V. (2018, May). Aligning security objectives with agile

software development. In Proceedings of the 19th International Conference on Agile Software

Development: Companion (pp. 1-9).
Rindell, K., Ruohonen, J., Holvitie, J., Hyrynsalmi, S., & Leppänen, V. (2021). Security in agile software

development: A practitioner survey. Information and Software Technology, 131, 106488.

Savola, R. M., Frühwirth, C., & Pietikäinen, A. (2012). Risk-driven security metrics in agile software

development-an industrial pilot study. J. Univers. Comput. Sci., 18(12), 1679-1702.

Sherif, E., Yevseyeva, I., Basto-Fernandes, V., & Cook, A. (2024). The Smart Approach to Selecting

Good Cyber Security Metrics. Journal of Internet Services and Information Security, 14(4), 312-

330.

224

Sinha, A., & Das, P. (2021, September). Agile methodology vs. traditional waterfall SDLC: A case study

on quality assurance process in software industry. In 2021 5th International Conference on

Electronics, Materials Engineering & Nano-Technology (IEMENTech) (pp. 1-4). IEEE.

Sultan, K., En-Nouaary, A., & Hamou-Lhadj, A. (2008, April). Catalog of metrics for assessing security

risks of software throughout the software development life cycle. In 2008 International

Conference on Information Security and Assurance (ISA 2008) (pp. 461-465). IEEE.

Thool, A., & Brown, C. (2024, June). Securing agile: Assessing the impact of security activities on agile

development. In Proceedings of the 28th International Conference on Evaluation and Assessment

in Software Engineering (pp. 668-678).

Dreheeb, A. M., & El Tajouri, H. (2025). Role Of Artificial Intelligence In Enhancing Cyber Security.

Bani Waleed University Journal of Humanities and Applied Sciences, 10(3), 121-129.

 Vacca, J. R. (Ed.). (2012). Computer and information security handbook. Newnes.

Vicente Mohino, J., Bermejo Higuera, J., Bermejo Higuera, J. R., & Sicilia Montalvo, J. A. (2019). The

application of a new secure software development life cycle (S-SDLC) with agile

methodologies. Electronics, 8(11), 1218.
Wagner, T. J., & Ford, T. C. (2020, February). Metrics to meet security & privacy requirements with agile

software development methods in a regulated environment. In 2020 International Conference on

Computing, Networking and Communications (ICNC) (pp. 17-23). IEEE.

